ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIE) 301, Elektrotechnika 38

RUTJEE, z. 38 (1-2/2020), styczen-czerwiec 2020, s. 81-95

Maciej PENAR?

PERFORMANCE ANALYSIS
OF WRITE OPERATIONS IN IDENTITY
AND UUID ORDERED TABLES

Design of the database includes the decision aheythysical storage. This is of-
ten overlooked as 1) this cannot be expressedaimdatd SQL and in result each
Database Systems have their own way to specifypliysical storage and 2) the
decision is often made implicitly. This is danges@ituation as many of the data-
bases use B+ trees as table implementation whichssthe data physically sorted
by some ordering attribute. The choice of the dndgattribute largely affects read
and write operations. Commonly, IDENTITY/AUTO_INCREENT constraint are
being chosen as ordering attributes, due to tlasly esage and monotonic nature.
In some cases ordering tables by the attributese/halues are drawn from uni-
form distribution leads to better performance im® of Transactions-Per-Second.
Such cases includes situation when data doestfiegnin-memory or when we
can limit the set of physical pages being accedsdtie end, however, We cannot
entirely say that either monotonic or random atites are superior. Both have their
pros and cons. In this article We present (1) sthestription of the data structures
in contemporary Database Systems, (2) the advantagethe disadvantages of the
two common types which are used as the clusteritgowtes: GUID and
IDENTITY, (3) performance analysis of write opeaatiwhich compare both data
types using B+ tree as primary storage and (4uetalthe efficiency of these bulk
load operation using heap files and B+ trees.

Keywords: database design, logical model, heap files, &e, insert performance

1. Introduction

Few decisions should be made while designing the logical modet aofat
tabase (DB). Firstly, DB designer should try to fulfil funo&b requirements,
usually by creating tables with the appropriate data typesng8ly, constraints
are put on the created schema as a result of normalizasBoRrQREIGN KEY

1 Corresponding author: Maciej PenBzeszéw University of Technology, The Faculty oéd&l
trical and Computer EngineeringAleja Powstacéw Warszawy 12, 35-959 Rzeszow;
mpenar@kia.prz.edu.pl, https://orcid.org/0000-0@@31-807X.

82 M. Penar

constraints) or by incorporating some business logic inside thbats project
(i.e. CHECK/UNIQUE constraints) [1]. Finally a good desigsieould consider
context of the usage - how data is written, updated and read. Ataesindexes
and partitioning schemes are created and the physical structure shootdée c
— one of the most popular choices is the B + tree as physipirentation of
table.

In this article we analyse the performance of ordered and uedrdérib-
utes as clustering key in B + tree. We use two most popular tyiees:
IDENTITY and GUIDv4 [2]. Such analysis are regularly catraeit on unoffi-
cial blogs and are subject of continuous discussion — usually endingupr-
whelming criticism GUID [3] [4] as they underperform in camtaionditions.
However, few articles happens to state otherwise [5] [6]oktimiately existing
articles do not use scientific methods to evaluate performarlsze.it is common
that DBs are compared to NoSQL solutions [7] [8] without statimigh structure
has been used as a storage and how the data was sorte@gif. itn this article
we will consider the functional advantages and disadvantadbes#f types and
will present the results of our experiment which assesses datiethess.

The article is organized as follows: section 2 provides a briefigéen of
how modern database writes the data. Section 3 describes thetagégaand
disadvantages of GUID and IDENTITY. Section 4 presentsdhelts of pro-
posed experiments. Section 5 summarizes the article and s#iscusther re-
search.

2. Storing the data

Typically while executing CREATE TABLE command, DB decidesahhi
structure should be used to as a table. DB organizes tharthtaetadata in
blocks of bytes callegages In this section we will give a short description of
the data structures commonly used in DBs and we'll discusacthéties that
Database Management System (DBMS) performs during INSIBRimand. We
will finish the section with comment about transaction log. Twacttires, which
are commonly used in DBMS aneap filesand aB + trees [9].

2.1. Heap files

Heap files (also known as Sequential files) are DBMS ecgnvatf linked
lists. Pages of heap files are linked together using poivtiech are stored in a
special sector of the page calleelader This structure has a relatively low cost
of INSERT command as it only requires appending it in the fraeesof the last
page (see fig. 1). However, if the heap file is not indexed 8&LECT statement
requires scanning all blocks. This data structure is ofteningzata Warehouses
as it provides:

Performance analysis of write operations in idgntit 83

» Support for bulk operations as tables can be copied page-by-péaye. Af
wards the pointers are updated.
» Daily update of the reports may require scanning whole dafHsete-
fore, the default method of accesing data in heap files are not drawback.
In order to index such heap files, one need a method that is usedtity
the record regardless of the physical location on disk. DB imp&tment method
to determine the logical ID of the record within the fllsually component exists
in DB which provides such identifier and in some cases it cam li@tleneck
when many concurrent INSERTS are performed.

ID NAME

SURNAME

NAME SURNAME

1 Lorem

Lorem

fringilla

semper

2 ipsum

auctor

iaculis

Sed

3 dolor

suscipit

dolor

tempor

1D

NAME SURNAME

tempor dignissim

volutpat Curabitur

4 Lorem

tincidunt

Lorem

Lorem

Free space

Free space

Page 1

Page 2

Free space

Page 3

11 Lorem Ipsum

New Record

Fig. 1. Allocating record in heap file with 3 pages

2.2. B+ tree
Also known asClustered IndeX10]. This structure requires an ordey
over some attribute A (or a list of attributeb) B + tree there are two kind of
pages:
 internal nodes — which contains values of attribdtesid pointers to (1)
either other internal nodes on the lower level of the treei(2d the
leaves which contains raw data. Each nifdeontainsn pointersp and
n — 1 keysk € A. In each node, any pointgrleads to nod&/’ so that:
N'(p)) ={x € N'| ki_y <x.A<k;}, forl <i<n.lIncasewheh=
1 ori = n left and right side of inequality are omitted respectivelisT
is shown in the figure 2.

84 M. Penar

» leaves (data pages) — which stores the raw data. Lisgeess connected
with pointers in a similar fashion as in the heap files. Tlagife and the
fact that data is ordered kg, 4, enables effective range queries given
the value ofA.

SELECT statements which have different attributes #hamthe WHERE
claus requires a scan on the leaves. Also the INSERT to ae® #stmore com-
plex than INSERT to the heap file. In B+ trees it requiredifiig the appropriate
block so the orders,, . 4, is preserved. If the leaf cannot hold any more data, it
may require 1) splitting the page in half and 2) updating thenait@ode level
above (if required). Example of B + tree is in the figure 3.

Pl Kl Ki—l pi Ki Kn-l Pn
Y
L v
Page where:
¥ <= K1 Page where: Page where:
K< X <= Ki Kn-1 <X

Figure 2. Internal node of B+ tree

10 Level O (Root)

2 6 50 Level 1 (Internal)

i i pointer ointer
kPOimter) aexc=g pPIMCT J pexcmt0 b P Jaoex<=sof — — — o so<x | Level 2 (Leaves)

Figure 3. Example of B+ tree(here the data pagesaats only information about ranges of the
values)

Performance analysis of write operations in idgntit 85

B+ tree implementations in DBMS have subtle details whidoentes the
performance. Often the data in leaves is unsorted to minimize the reguoireem
reorganize the leaves after each INSERT. The order of theigastablished
based on the speciaffset array— which contains the offsets of the rows in the
data page.

2.3 Additional comment

To minimize the expensive disk 10, DB store data in main mermbnyffer
pools. The size of the buffer pool is usually configurable. Whetheot a block
of data is in the buffer is important not only for read but also for the opitea-
tions. In particular this is crucial for B + trees becausdNI8ERT transaction
must find the leaf where the new record should be put — onéhindeyabout this
as implicit SELECT.

The author want to note that Durability of the transactioracigeved by
logging the transactions. Write-Ahead logging (WAL) [11] is camiy used as
logging scheme. In WAL transaction are firstly written to the logj the trans-
action is executed. DB are properly utilized only when the trapsalkttg be-
comes the bottleneck — therefore observing waits on transacticarage indi-
cator if some DB operations can be optimized.

3. Attributes

In this section, we describe two data types which are commonly used as or
dering attributes of B + trees. We provide functional advasteand disad-
vantages of both types of data.

3.1. IDENTITY/SEQUENCE

This type is implemented as a 4-byte or 8-byte integainitiea is to pro-
vide the way to generate monotonic values. This means Bhatl@cates special
counter for each column of this data type. It is incremented whetieveounter
is accessed.

Extension of this concept is known as Database Sequencdsarbispecial
objects which enable the precise control over the generateésv Often, when
DB provides the Sequences, they wrap the IDENTITY. Also, otle¢ghaads exist
to generate the sequential values i.e. SEQUENTIALID (whiate
GUIDv1/GUIDv2) or timestamp.

When monotonic value is used, then the “last page problem” oddursa[
large number of concurrent INSERT transactions may requikssiog and
modifying the last page (see Fig. 4). Which leads to |larkention there, as
every transaction require exclusive lock on the page torpegotual transaction.
Due to this, one can observe a significant drop of the databasgltiput. On the
other hand, the pages where the payload of the INSERT should barpbe

86 M. Penar

easily predicted — which results in minimal number of IO opmnatiAddition-
ally, such pages are rarely deleted from the buffer pools.

— — — —Requiredread- — — — —

New record

10

New record
— — -Required read- — — —

New Record

50

r —Required read — — —

L |

INSERT

****** {15¢xes0k — — — — — — — 4 s0<x feT

Figure 4. "Last Page Problem" when using IDENTITYe path that is read by every transaction
is highlighted

3.2. GUID

Globally Unique Identifier (GUID) is 16 byte integer. There fae sub-
types of GUID which differs in way of generating the valueghis section we
consider the GUIDv4 which values are drawn from the uniform distribution.

When using the GUID, "The Problem of the last page" disap@asaandom
page is chosen for modification, thus reducing the probability ofdontention.
As the values are random — in a distributed environmentlitr@scthemselves
can generate them which eases the usage in the distributeshemsmt. Unfor-
tunately, when synchronizing the multiple datasets, some puobgybe required
when the duplicates are found.

As long as the whole dataset can be stored in main memoryartdemn
types can be successfully used as ordering attributes. Howetien the size of
the table exceeds the size of the buffer pool, it is likedy the page that is af-
fected by the transaction is not present in the cache. This rfeaaslditional
disk 10 which generally requires more time than waiting on & &scstated in
"The Last Page Problem". Table 1 presents a functional ¢sopaf the data

types.

Performance analysis of write operations in idgntit

87

Table 1. Functional comparison of IDENTITY and GUI

IDENTITY

GUIDv4

Pros

» Last page is often in the cache,
which reduces disk 10

» Often, it is significantly smaller
than GUID

» Capabilities are extended with
SEQUENCE

« |dentifies entity in distributed DBs
¢ Prevents the lock contention at the
last page

Cons

* Generated by DB

« Does not identify entities in dis-
tributed DBs

* Introduces “Last Page Problem’

» Does not prevent fragmentation
of the pages

 In distributed DBs the two-way
synchronization requires synchronou
flow

« Drops the throughput of the DB
when the dataset does not fit in the
memory

» Often, it is significantly larger than
IDENTITY

* In distributed DBs the synchroniza
tion may require policy of identifying du-

s plicate entries

4. Evaluation

The experiments were carried out on two nodes: the first cord@nghe
second simulated clients performing concurrent transactionsorDBhich the
test was carried out was Microsoft SQL Server 2014 — Stdithition installed
on the Windows 10 Pro 64-bit. DB node had Intel (R) Core (TM) i7-6700 CPU
@ 3.40 GHz, processor with 8 GB RAM and two hard drives. In ordeatniae
the write performance to tables with random and monotonic dlugtthe DB
was configured as in Table 2. The Disks were checked with iiosb— the
results are presented in Table 3.

Table 2. DB configuration parameters

Parameter Max. Initial Max. Initial B;cf)f;r Page DB
log size | log size | DB size | DB size size size threads
Value 10 GB 2GB 20 GB 2 GB 4GB 8 kB 4
Table 3. Referential measurement of disk perforraarging winsat
. e Seq 64.0 =60 Avg. Seq | Max. la- Avg. Rand
R ES L0 Read S Read tenc Read
Read Write y
Disk 1 164.52 447.71 357.31 64.466
SsSD MB/s MB/s mB/s | 0-169ms ms 0.186 ms
Disk 2 1.47 109.67 114.47 74.404
HDD MB/s MB/s MBls | °334ms ms 12.182 ms

88 M. Penar

The following experiments were proposed to evaluate the performance:

* Experiment 1 — INSERT INTO performance evaluation when multiple
several parallel connections are opened, assuming that theevofuthata is in
the buffer pool.

* Experiment 2 — multi-iteration INSERT INTO performance evatuati
when multiple several parallel connections are opened. Aftérieaation, the
data is preserved in DB. Time is measured for each itergiiosome iteration
the data volume will exceed the capacity of the buffer.

* Experiment 3 - in which we evaluate the effectiveness of tteh h@ad
in different structures.

Below in the dedicated sections will be thoroughly discussethanesults
of experiments.

4.1 Experiment 1

The first experiment examined the performance of write opastivhen
many concurrent connections were executing the stored proc&daedocode
for the procedure is:

FOR i FROM O TO X
BEGIN TRANSACTION
INSERT INTO TABLE DEFAULT VALUES
COMMIT
END FOR

Its workload simulates OLTP environment — where transactione hav
“point”/"by-id” flavour (insert, delete, update or read of a sengdw). In
the experiment we defined the following variables:
* Number of parallel clients connected to the database
¢ ={1,10,25,50,75,100}
* Number of rows inserted into the table — among all the connections
R :={0,51,2,4} * 10°
* Width of the row (in bytes)
W = {50,104, 254,504}

All tests were repeated 5 times and mean time and standaatiale was
calculated (in seconds) — measurements are presented in table 4.

In the setup when a single connection was performing insertsamreot
indicate which solution is better — mean difference is redbtismall even for the
largest volumelW = 504, R = 4 * 10°), the relative difference equals to 8% in
favour of the IDENTITY.

Performance analysis of write operations in idgntit 89

Table 4. Comparison of mean time (in seconds) &HRT operation on disk 1 for experiment 1.
Standard deviation is shown in square bracketsy Gotor indicates lower execution time

nser. GUID IDENTITY
ted
rows Row width[W] Row width[W]
R] 50 ‘ 104 | 254 | 504 50 104 | 254 ‘ 504
Connection: 1
so0000 | 361111 | 353[06] | 383[1.9] | 36.8[1.2] | 345[0.4] | 36.4[06] | 38.9[0.8] | 35.9[0.9]
100000 | ‘69,1 (1.3) | 72.8[1.7) | 765[25] | 73.9[1.4] | 69.9[05] | 719[1.7] | 77.6[3.4] | 7L2[L7]
200000 | 138.6 1493 1472 1505 1403 | 14730q)| 1040 1424
0 [1.2] [3.5] [5.5] [2.4] [1.6] Sl [3.3] [3.5]
400000 | 290.8 293.6 293.8 312.7 2887 | po151777| 2867 288.1
0 6.7] [3.6] [5.2] [5.9] [8.3] S [6.5] [9.8]
Connections: 10
500000 | 1051031 [108[04] | 122[1.7] | 12901 | 12.4[03] | 127(05] | 13.2[0.8] | 14.5[L4]
10%000 215[1.2] | 21.8[L3] [gg'i’] 26.9[L5] | 24.9[0.4] | 24.9[0.4] | 26.5[0.8] | 28.4[0.6]
20%000 412[15] | 442[22) | 471124 | 53.1[1.7] | 495[0.8] | 5L1[1] | 525[1 | 57.1[2.2]
400000 1053 1141
. 84.1(3.4] | 9L142) | 964 [L9] | 117(45) | 99.7(13] | 1015(28] | T o) o
Connections: 25
s00000 | 63108] | 65003 | 7.7[07) | 87[1] | 93[| 9805 | 1L1[L1] | 132[0.9]
10%000 12.905] | 13[05] | 153[0.9] | 182[0.4] | 18[0.6] | 19.2[0.3] | 21.3[1.4] | 25.8[0.8]
20%000 33[17.8] | 26.8[12] | 304[1.7] | 37[15] | 36.2[11] | 37.8[1.3] | 42.6[1.1] | 50.9 [1.9]
40%000 50.4[14] | 532[2 | 643[2.2] | 83.1[4.7] | 70.8[16] | 749[11] | 852[1] 133;']2
Connections: 50
s00000 | 521031 | 56[0.4] | 67[1] | 73[13] | 9.3[0.3] | 102[04] | 11.8[0.9] | 13.7[1]
10%000 10.2[02] | 10.4[06] | 129[0.9] | 155[1.2] | 182[0.4] | 20[0.4] | 235[1.1] | 28.1[0.9]
200000 | 20304 | 212[02] | 253[1.3] | 32[27] | 36.7[1.1] | 401[05] | 47.2[1.2] | 55.8[L2]
40%000 415[09] | 45137 | 51.2[2.7) | 715041 | 73[0.8] | 79.8[0.7] | 93.3[2.2] }213;]9
Connections: 75
146
so0000 | 521061 | 5003] 6.0 7010 | 104[04] | 11.3[05] | 13.1[1.2] | 14.9[0.9]
10%000 10[07] | 98[05 | 11.7[] | 145[1.1 | 201[0.3] | 222[0.3] | 24.9[1.1] | 29.1[0.5]
200000 | 191 10.7) | 197[06] | 233[06] | 3L8[] | 40.3[0.4] | 52[17.5] | 49.9[0.8] | 57.7 [L8]
400000 1043 115.9
. 37.7(2.2] | 413112) | 482[L7) | 6893 | s0.1(08] | ot | serpsl | %
Connections: 100
so0000 | 53111 5[04] | 56[06] | 7.6[2 | 11.9[0.3]| 12.4[0.4] | 144[0.7] | 155[1]
10%000 9.1[04] | 9.8[L1] | 11.7[0.9] | 135[0.4] | 236[0.7] | 242[05 | 263[1] | 31.2[1L.8]
200000 | 18.610.9) | 198[05] | 229[1.3] | 29.2[2.2] | 46.1[0.6] | 502[4.1] | 53.6[14] | 613[2.2]
40%000 36.5[0.7] | 40.8[3.3] | 46.7[1.2] | 66.3[2.6] | 91.4[0.6] | 96.8[L.1] 1352']9 }ﬁf

90 M. Penar

The situation changes when records are inserted in parakecincase this
leads to significant reduction of time (37% of the base tioné&sUID, 39% for
IDENTITY). When using GUID and 10 connections in every but two cases
observe faster INSERT with relative difference at level < 10%.

With 25 and more connections difference between the GUID and
IDENTITY significantly differs. In case of smallest volen# = 50, R = 0,5 *
10°) GUID organized table finishes the task 1.48 to 2.24 timesrfésém
IDENTITY. Similarly, the largest volume of dat#/(= 504, R = 4 = 10°) can
be inserted 1.24 to 1.83 times faster. The relative acceleration usingrir@xe
tions is presented in figure 5.

"Last Page Problem" occurs more often when the row sigmall because
the greater number of the transactions is trying to writhéasame page. This
leads to the best relative performance of GUID organized tabén i = 50,

R = 4x10% — one can observe 2.5 times speed up. It should be noted that
IDENTITY will not gain performance boost when more than 25 connecéiens
used — more number of connections leads to performance drop.

2.61 /7 <
~
/ ~ -\
—_— el _ - Saea=—=—"
N
/ S
241 / N
= ’ I
S /
Q) / W - Record Width
>
[= 50
E 2.2 - 104
254
o 504
(0]
£
'—
2.0
1.81
500000 1000000 2000000 4000000

R - Rows count

Figure 5: Relative comparison of mean Times usid@ @darallel connections

At the end of this subsection, we just note the fact that repehimexper-
iment on second disk gave similar results.

Performance analysis of write operations in idgntit 91

4.2. Experiment 2

The second experiment was derived from the experiment 1eHswds to
load the data to DB within several iterations and after éhetlrecords were pre-
served. The number of records in each iteration was fixed. Thedesiescribe
with the following parameters:

* Number of parallel clients connected to the database100

* Number of rows inserted into the table — among all the connectiens:

4% 10°

» Width of the row (in bytes)y = 254

* Number of iterations were set €0 After last iteration, the database had

24kk record — which was roughly 5.68 GB of data.

Test was repeated 4 times on disk 1 (SSD). The time wasuneelin sec-
onds.

Table 5: Comparison of mean and cumulated exectitimnof stored procedure (by iteration)

Method Iteration Time[s] Cumulated time [s]
1 60,55 60,55
2 58,99 119,54
. 3 87,38 206,92
guid
4 231,65 438,57
5 371,84 810,41
6 434,97 1245,38
1 114,89 114,89
2 108,2 223,09
. 3 108,72 331,81
numeric
4 108,77 440,58
5 109,54 550,12
6 108,84 658,96

The results of this test highlights that when data in a table does moti i
buffer pool, IDENTITY’s predictible storage page becomes aigegbroperty.
In the first three iterations (about 3 GB of raw data, witluffier pool of 4 GB)
using GUID as clustering attribute is beneficial — as obsermethe first
experiment.Unfortunately, when DB cannot find pages in the bufféigas to
perform the expensive disk 10 requests which causes aistepse in the
execution time. This can be seen in figure 5. When using IDEX&#Tclustering
key the storing page does not disappears from the buffer poal r@sult of
“cache thrashing”), thus making the INSERT operation work iconstant time,
regardles of table size. Despite the fact that initiddéyIDENTITY configuration

92 M. Penar

performs twice slower than the GUID — in long run, the cumuldinae of all
six iterations turned out to be almost twice lower (658 secasidg IDENTITY
and 1245 seconds using GUID, as observed in Table 5).

_4
4001 -
N ,_E
o
/7
c 4
§ 300 ,
8 #
2 200 .
= 7’
7/
1001 ==
> O N > > N
I X< N o0 O o0
o2 AP q) pd o0
AS QN o\ B G 3\ P\

Iteration number + predicted table size in GB

==guid - numeric

Figure 6: Comparison of mean execution time ofextgarocedure (by iteration)

4.3. Experiment 3

In the last experiment we use a single connection to perforin bpécations
(Bulk Inserts). In this experiment we compare Heap Fileh ®it trees (with
various clustering attributes).For this test we prepared the file of B6H Gaw
data. The parameters in this experiment were:

* Number of parallel clients connected to the database: c =1

» Number of rows inserted into the tabte= 24 * 10°

e Width of the row (in bytes)y = 254

+ Single commit batch siz&¢0°

* Single commit batches were sorted
Test was repeated 5 times on first disk and the resulthanasn the figure 7.
When using B+ tree, the choice of the clustering attribute hat significantly
influenced the load time — in both cases the mean time was arousecddfls.
Changing the table implementation to the Heap Files drasticailglown the
time. When using Primary Key (PK) constraint, the load dase in about 120
seconds. When all constraints were dropped, the load timevadhb5 seconds
(the lowest achieved load time). Interestingly enough — the chblRK type did
not influenced significantly the time.

Performance analysis of write operations in idgntit 93

210~

180-

0)
9 150-
o
o
)
@ L
) R
€ 120-
= [——
90-
I
60- T T T
o° <« R R o0 o0
© Q/P‘? Q/P‘? ?\N\ ?\N\
\s i\ s "o
dﬁ (“ 6)\ (*\
G N M) «\
\ \0@

Configuration

Figure 7: Comparision of batch load time

5. Conclusion and further research

The study in this article shows the usage of random and monotuitiatas
(represented by GUID and IDENTITY). We shows the conditiongweheosing
the right attributes leads to performance gain, measured asatt@n-Per-Mi-
nute. Also we presented the dramatic drop of the performancedateedoes not
fit in the memory when random attributes are used.

One should note however that some functionalities exists thatotamer
this negative effect — notably partitioning, Multi-Temperat8terages [12] or
more control over the generated values (as in GUIDv1 or GUIDv2 [13]).

Further research should aim to:

1) Propose the formal model describing the performance

2) Demonstrate the ability to scale out the tables clustereieorandom
attributes beyond the size of the buffer pool

3) Test the performance of bulk load when dataset is not sorted

4) Measure the impact of page fragmentation

94 M. Penar

Bibliography

[1] Ullman D.J., Widom J.A First Course In Database Systems, Helion Pudljsh
pages 110-129, 1997

[2] Leach P., Mealling M., Salz RRFC 4122: A Universally Unique Identifier (UUID)
URN Namespace, https://tools.ietf.org/html/rfc4122cess: 9 September 2018)

[3] Nilsson J.:The Cost of GUIDs as Primary Keys, http://www.infor.com/
articles/article.aspx?p=25862 (Access: 9 Septe2de&8)

[4] Clayton R.:Do you really need a UUID/GUID?, https://rclaytsifurback.com/do-
you-really-need-a-uuid-guid (Access: 9 Septembé820

[5] Ricken U.: GUID vs INT/IDENTITY als Clustered Key, https://wwdb-
berater.de/2015/04/guid-vs-intidentity-als-clustekey-2/ (Access: 9 September
2018)

[6] Penn J.: Taking It Further: GUIDs vs INTs as Prineys, https://scifisql.com/
2017/05/07/guids-vs-ints-as-primary-keys/, (Acc&September 2018)

[7] Boicea A., Bucur I., Radulescu F., Truica C.A.:fBemance Evaluation for CRUD
Operations in Asynchronously Replicated Documeii@ed Database, 20th Inter-
national Conference on Control Systems and Comj8dience, Bucharest, 2015

[8] Li Y., Manoharan S.: A performance comparison ofLS&pd NoSQL databases,
IEEE Pacific RIM Conference on Communications, Cateps, and Signal
Processing - Proceedings, 2013

[9] ElmasriR., Navathe S.: Fundamentals of Databaste®, Helion Publisher, pages
449 & 288-501, 2005

[10]Bata M., Grd P.: Analysis of B-tree data structure atsdusage in computer
forensics, Central European Conference on Infommasind Intelligent Systems,
2010

[11]Jhingran A., Khedkar P.: Analysis of Recovery Database System Using a Write-
ahead Log Protocol, Proceedings of the 1992 ACM MBDB International
Conference on Management of Data, 1992

[12]Brown D.P., Richards A: Managing access to datnmlti-temperature database,
US Patent US9015146B2, 2015-04-21

[13]Marquardt A.: Generating Globally Unique Identifiefor Use with MongoDB,
https://www.mongodb.com/blog/post/generating-globahique-identifiers-for-
use-with-mongodb (Access: 9 September 2018)

ANALIZAWYDAJNO SCI OPERACJI ZAPISU DLA TABEL
UPORZADKOWANYCH ATRYBUTAMI IDENTITY ORAZ UUID

Streszczenie

Projektowanie bazy danych wymaga peif decyzji o fizycznej strukturze przechowaeg)
dane. Cesto wplyw tej decyzji jest niedoceniany poniewy standard SQL nie precyzuje tego

Performance analysis of write operations in idgntit 95

ograniczenia, przez co #@dy dostawca Bazy Danych implementuje je po swoj@muybor struk-
tury jest podejmowany niejawnie. Na og6t dainymi strukturami g B+ drzewa ktdregsstruktu-
rami posortowanymi. Wyhor tej konkretnej implemeitéabeli wptywa zaréwno na wydajd
operacji odczytu jak i zapisu. Ze wegdl ze czsfy praktyly jest stosowanie atrybutow
IDENTITY/AUTO_INCREMENT jako kluczy gtéwnych, weditych wartéci atrybutéw usta-
lany jest fizyczny poradek tabeli. W pewnych przypadkach warto jednak y&te z atrybutow
o wartagciach losowych w celu zwkszania przepustowoi Bazy Danych (liczonej jako liczba
transakcji na sekur)l Takie przypadki obejmajsytuacg gdy dane mieszazsie w paméci ope-
racyjnej lub gdy mgemy ogranicz§ zbiér fizycznych stron do ktérych Baza Danycjuhie sé
odwotywas. W ogolnym przypadku ani atrybuty monotoniczné |@sowe nie g lepsze od swoich
konkurentow. W tym artykule (1) opisujemy struktuvykorzystywane we wspotczesnych Bazach
Danych, (2) opisujemy zalety i wady dwdch najczej wykorzystywanych typéw: GUID oraz
IDENTITY, (3) prezentujemy anakavydajndci operacji zapisu poréwnaga oba typy w tabelach
implementowanych jako B+ drzewo, (4) analizujemydainas¢ operacji wsadowego tadowania
zaréwno w plikach sekwencyjnych jak i B+ drzew.

Stowa kluczowe projektowanie baz danych, model logiczny, pdkowanie, pliki sekwencyjne,
B + drzewo, UUID, GUID, IDENTITY, sekwencje, wydajt wstawiania, tadowanie wsadowe
DOI: 10.7862/re.2020.6

Przestano do redakgciji: stycz@019 r.
Przyjeto do druku: luty 2021 r.

