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MODELING AND IDENTIFICATION OF SYSTEMS 
WITH FRACTIONAL ORDER INTEGRAL AND 
DIFFERENTIAL 

A universal model of fractional-order differential equation is proposed. It is de-
rived in form hyper neuron, based on a representation of the solution of the equa-
tion by finite increments and a modified form of the Riemann-Liouville. Imple-
mented method for identifying parameters of objects by fractional differential 
equations is described on the base hyper neuron and modified genetic algorithms. 
Accuracy of calculations is incased due to excluding of circular references and dy-
namic correction of the fractional integration error. This allows to use hyper neu-
ron as inlined model of such objects in the digital control systems and in conjunc-
tion with genetic algorithm it is used for the identification of their parameters with 
high accuracy.  

 
Keywords: fractional differential, fractional integral, hyper neuron, genetic algo-
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1. Introduction  
 

Real physical processes, that take place in nature and in the artificial tech-
nical systems and circumferences, appear to be dynamic systems, which mathe-
matical models include differential equations of fractional order. 

Thus while control of the heat transfer at delineated diffusion processes, 
convection it is rational to describe controlled object and regulators by fraction-
al-order differential equations with order 0.5. In case the condensable or bub-
bling up Freon serves as heat (of cold) source, the drops of liquid and gas bub-
bles convert heat exchange ambient into the structure similar to fractal. In such 
structure the effects of abnormal sub- and super-diffusion [6], while it’s describ-
ing the order of the differential equations differs from 0.5 in the general case. 
Unsteady-state diffusion takes place in the electro chemical capacitors (ECC), 
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that gain acceptance at present time due to the ability of rapid charge and dis-
charge at the kinetic energy recovery system of the electric cars (KERS), due to 
the electrodes void structure, the current strength depends on fractional deriva-
tive of the potential [7]. 

As a result, energy storage and energy output in the ECC, as in accumula-
tors, is described by a combination of the integral and fractional integral equa-
tions [8]. For the described object class the usage of the traditional methods of 
research may end in significant errors while parameters identification and may 
lead to the mismatch of the dynamic and static indexes of the systems to the 
estimated indexes and as a consequence to the errors while synthesis of the con-
trolling systems [8].  

2. Study Materials 
 

Work objective – elaboration of the universal model of fractional differen-
tial equation random order whether for the solution of equation by method of 
finite increments or for the analysis and identification of the parameters of the 
similar systems with application of the genetic algorithms and the models of 
such objects realization at the discrete-controlling systems. 

The fractional integration is a special case of the fractional differential 
equation of the following form: 
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then, get over to the finite increments, for example, for the degree of order 2+µ 
we will deduce “fractional difference equation”: 
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Target value of the output coordinate iy  can be found by method of frac-

tional integration of the determinate value of the fractional derivative

( )i iy I D yµ µ= . In the digital form the equation (2) can be assumed by schemat-

ic diagram shown at the figure 1. 
It is obviously, that changing the quantity of the return couplings and recal-

culating the coefficients ,n nA B , it is possible to solve equations of the degree 

order n µ+ .  

 
Fig. 1. Schematic diagram of the hyper neuron 

 
Let us denote such ensemble of the components hyper neuron, the charac-

teristics of what are close to the characteristics of the biological neurons as per 
the modern ideas [1]. However, while evaluation solution to the equation (2) on 
the i − step the problem occurs, connected to the null value of the output coordi-

nate iy  for the calculation iD yµ  in the right side. 

Let us write over (2) in the following mode: 
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Let us use for the solution search approximating function that is based on 
the modified digital form of the Riemann-Liouville [2]: 
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After generations we will receive formula for the revised figuring iy : 
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Resulting expression statement (3), (6) afford exclude circular reference 
while figuring signal output of the hyper neuron. 

Proposed method is characterized by the first order accuracy relative to the 
step t∆ , but absolute accuracy for the arbitrary signals is at 20…50 times less, 
then using initial form Riemann-Liouville. 

The objects prescribed by the fractional differential equations are the vari-
ous technological processes or devices during operation of what the convection 
and diffusion effects appear. 

Normally it is sufficient to describe such effects in the equations of the or-
der 0.5µ = . However, in recent years the devices with porous laminated surface 
appeared and films with diverse pattern and characteristics of the micro pore at 
the varied depth appeared; especially while the diffusion of the charged parti-
cles. 

Order of the equations govern the study of such structures behavior is de-
termined by the extensional or surface dimension of the fractals and not only 
differs from 0,5 but also changes in transient process.  

For the reckoning of the equation solution with the variable µ  let us accept 

, that for j  instant of time the equation order is characterized by any jµ , and we 

will receive the following formulas from the (4) and (6): 

For the reckoning of the fractional integral( )x t : 
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Or for the reckoning of the solution for fractional differential equation: 
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The certainty of such solution is unknown, as the theoretical basis of the 

fractional integrating with time-varying order ( ) ( )tI f tµ  is not formulated, how-

ever, when considering wander of the parameter ( )tµ  such attitude to the reck-

oning is assumed logical. But it is necessary to try to estimate the accuracy of 
such reckoning. 

Solution check can be founded on the following property of the fractional: 

( )( ) ( )1 2 1 2 .I I x I xµ µ µ µ+=
  (9) 

Taking 2 11µ µ= − , we will deduce 

( )( )( ) ( )1

0

.
t

I I x t x t dtµ µ− = ∫
  (10) 

As the evaluation of the first-order integral for the analogue functions is 

admissible with high accuracy, thus the measure of inaccuracy ( )tδ  can be 

evaluated for the consequent analysis of the fractional integrals (fig.2). 
 

 
Fig. 2. Determination of the of the fractional integral calculation error  

 

Deduced value of error ( )tδ  for the every instant can be used for the dy-

namic correction of the reckoning of the fractional integrals by the method of 
correcting input signaling. 

However the error arises in result of double fractional integration, i.e. each 
from two components inserts its part of error. For the correctional signal rear-
rangement we will use the fact, that when integrating the identical signals with 
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the fractional integrating continued order of the calculating error in case of dif-
ferent µ  vary , but in case of µ  and 1 µ−  they coincide (fig.3). 

It follows that, the inaccuracy can be reallocated with weight coefficient 
0,5. 

 

 
Fig. 3. Calculation error of the fractional integral with constµ =  

 
As the correcting signal will be integrated, thus for it’s origination let us 

differentil ( )tδ .  

Let us give a signal to the input of the first fractional integrating element. 
For the check of the results obtained let us calculate fractional derivative of the 
inaccuracy with order 1 µ− , using the correspondence between the derivative 

and integral ( ) ( )( )1 d
D I

dt
µ µδ δ− = , and we will give it to the input of the sec-

ond fractional integrating element.  
Resulting arithmetic model of the calculating block for the fractional inte-

gral with assumed dynamic correction is provided at the figure 4. Corrected val-

ue of the fractional integral ( )vI xµ  forms output signal of the block. Circuit 

«Test» allows comparing calculation errors without δ  correction and after δ  
correction but it`s not necessary when calculating the fractional integral. 

With constant order of the fractional integrating the supposed dynamic cor-
rection cures totally the inaccuracy in case of arbitrary input (fig. 5).  

On the figure 6, a is shown fractional integral calculation example in case 
of integration order wander, figure 6,b shows that when counting the dynamic 
correction the computational error is reduced more than in twenty times.  
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Fig. 4. Arithmetic model of the settlement block for the fractional integral with dynamic correction 
of inaccuracy 

 

 
a)     b) 

Fig. 5. Graphs of fractional integral variance (a) and error modify (b) with and without dynamic 
correction in case constµ =  

 

 
a)     b) 

Fig. 6. Graphs of fractional integral variance (а) and error variance (b) with and without dynamic 
correction in case varµ =   
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Besides, with rapid change of the µ  solution without correction is charac-

terized by the inaccuracy increasing through the amplitude, i.e. the unit can be-
come structural-unstable. Dynamic correction enhances accuracy and stability of 
calculation significantly (fig. 7).  

 

 
a)     b) 

Fig.7. Graphs of variance in fractional integral (a) and error variance (b) in case of «вhigh-
frequency» vibrations µ  

 
Hence estimated germ is deduced for the reckoning of the solutions for the 

fractional differential equations with time-variant order inter alios. 
If transient functions received in the result of the research tests, thus genetic 

algorithms [3] can be used for identification of the objects parameters admissibly 
governed by the fractional differential equations (1),  

From all their variety method of multipoint crossing 40% optimum speci-
men with insertion of 6% discarded specimen in following manner. Multipoint 
crossing chooses the germ of the        genetic algorithm, that is implemented by 
the random variations of the instance characteristics 5 %±  [1], for the popula-
tion degeneration exclusion.  

Deduced two derivatives substitute 40% of the discarded specimen. An-
other more 20% of the derivatives are deduced as averaging from the genes of 
the procreators, and one of the best specimen descendants deduced in the ances-
tor is the specimen, which parameters are determined by the gradient of the best 
specimen parameters modifications for the last several descents.  

Figure 8 illustrates the results of the object identification, declared  
by the fractional differential equation with indexes 

0 1 1 20,35; 0,175; 2; 0,006; 0,5a a b b µ= = = = = . Indexes of the identified object 

0 1 1 20,39; 0,173; 7,5; 0,006; 0,53a a b b µ= = = = =  force error retrieving 0,64 %, 

mode of the transient order aligns with stated, that allows to use identified in-
dexes for the further analysis and synthesis of the control systems. 
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Figure 9 illustrates the training processes – changing of values µ  and 
mean-squared error of the output signal of the best specimen is shown relative to 
the original signal bestF  from the generation number Gen.  

 
Fig. 8. Schedule of the transition processes for the initial and identified objects 

 

 

Fig. 9. Schedule of variance µ  and bestF  in the training process  

 
Developed methods of calculation and identification are used for the pa-

rameters identification for the ECC, which arithmetical model includes series-
connected integrator, proportional and fractional integrating component with two 
groups of the parameters (for ECC charge and discharge): ,  C C+ −  – ECC ca-

pacitance, ,  R R+ − – direct-current resistance, ,  ,  ,  B B µ µ+ − + −  – diffusion coef-

ficient and the integration order, describing diffusional and adsorptive features 



52 V. Busher, V. Yarmolovich 
 

of the double electrical layer. Differential equation in the operator form, explain-
ing the voltage change on the ECC connecting devices U  in the process of 
charge/discharge by the current I  with interval cht , should be set down on the 

following mode: 
 

1 1
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 = + + 
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Where [ ]0,1Aµ ∈ , [ ],ϕ π π∈ − +  – additional parameters.  

 
Such law of variation µ  with direct current of the charge/discharge corre-

sponds also to the dependency µ  from the  ECC voltage. 
Fractional integral component as per it’s features in the proposed model ap-

pears transitory between integral and proportional elements: it looks like an inte-
gral element in the transient processes and in the steady-state processes it looks 
like proportional element. Particularly, when the rectangular pulse is supplied to 
the lead terminal, output signal increases but not rectilinear, but in an exponen-
tial function and when the input signal is dropped till 0, the output signal drops 
to zero under the same law, instead of being stable. Such features are verified in 
the feed rates of the current step to the super condenser and when it’s voltage is 
stabilized. 

But in the steady state mode behavior of  ECC is equivalent to the behavior 
of the standard condenser. Thus, if we supply a current step of the definite value 
to ECC and then over time, supporting a constant voltage, will reset the current 
to zero ( fig. 10, a), then step voltage at the initial time will be proportional to 
the internal resistance of  ECC and the ratio between current integral and voltage 
change will be proportional to it’s capacitance. Diffusion effects don’t influence 
on the results of such metrics. 

That is why testing and experimental data processing for the ECC parame-
ters definition consist of several steps. 

1. The test series of the current impulses of diverse pulse height for ECC 
charge and discharge is supplied on ECC with further voltage stabilization until 
the current becomes close to zero (fig. 10, b) and current and voltage measure-
ments should be carried out with constant pitch t∆  (units, ten milliseconds). The 
test series consists of the condenser charges/discharge cycles of the currents 
from 20 to 100 A, repeating several times for the further averaging results.  
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    a) 

 
b) 

Fig. 10.  ECC charge (a) in the cycles series of charge/discharge (b) 
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2. Based on current integral and voltage change  ECC capacitance is deter-
mined : 

0 1

1

( )

;

t n

i
i

n

I t dt I t
C

U U U
=

∆
= ≈

∆ −

∫ ∑
  (13) 

3. As actually the current step intervenes for the 1...2k =  intervals, thus af-
ter capacitance index calculation resistance value should be determined: 

 
0

1

0

,

k
i

k
i

k

I t
U U

C
R

I I
=

∆− −
=

−

∑
  (14) 

Parameters obtained allow to distinguish separate voltage components in 
the ECC: voltage drop on the active resistance, charging voltage of the capaci-
tance and voltage loss in the diffusion layer. The graphs of the voltage change in  
ECC diffused layer are shown on the figure 11, demonstrating changing order of 
the fractional integration. Processing of the last compound allows to determine 
constraint µ  from the voltage and charge/discharge current, presented on the 
figure 12 for  ECC with capacitance index 1800 F. 

Except that in the process of the ECC identification with capacitance up to 
300...400F  when this feature can be ignored. Voltage loss in the diffusion 

layer is close to the voltage loss on the active resistance. Standard error while 
describing the experimental data, does not exceed 0.0045 V (0.2 % Umax) for 
ECC with nominal voltage 2.5 V.  

 

.   
Fig. 11. Graphic charts of the voltage loss in the diffusion layer 
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Fig. 12. Dependency graphs ( ),f U Iµ =   

 
But when identifying ECC diffusion parameters of the high capacity  

(>1000 F) this feature should be taken into consideration, as the voltage loss in 
the diffusion layer exceeds voltage loss on the active resistance in 2…3 times. 

As the result such correction allows describe  ECC behavior not only with 
inaccuracy no less than 

max0,05...0,1 %U , but also allows us to obtain the graphs 

diagrams of the transient processes, that are equivalent by their behavior to the 
experiment on the whole interval of the charging and discharge  ECC current 
(fig. 13). 

 

 
 
Fig. 13. Experiment graph diagram (Ui) and nomogram charts (U) of voltage loss in the diffusion 
layer of the ECC with capacitance 1800 F considering changes of µ  (dashed line) 
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Conclusion. 

In order to describe the behavior of the objects consisting of models of the 
fractional differential equations of random order, including the order variable in 
the transition process, the model of hyper neuron has been formulated, based on 
the method of finite increments application and modified discrete form of Rie-
mann-Liouville. Accuracy of calculations is incased due to excluding of circular 
references and dynamic correction of the fractional integration error. This allows 
to use hyper neuron as inlined model of such objects in the digital control sys-
tems and in conjunction with genetic algorithm it is used for the identification of 
their parameters with high accuracy.  
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MODELOWANIE I IDENTYFIKACJA PARAMETRÓW SYSTEMÓW  
Z ELEMENTAMI CAŁKOWO-RÓ ŻNICZKOWYMI UŁAMKOWEGO 
RZĘDU 

S t r e s z c z e n i e  

Zaproponowano uniwersalny model różniczkowego równania ułamkowego rzędu w postaci 
hyper neuronów, podstawową którego jest stosowanie metody przyrostów skończonych  
i modyfikowanej formy Riemann- Liouville do przedstawienia rozwiązania równania. Korzystając 
z  hyper neuronów i modyfikowanych algorytmów genetycznych zrealizowana została metoda 
identyfikacji parametrów obiektu opisywanego ułamkowymi całkowo-różniczkowymi 
równaniami. Zaproponowana metoda dynamicznej korekcji obliczenia stanów nieustalonych, dla 
systemów ze zmiennym rzędem ułamkowego całkowania, zapewnia wyższą wiarygodność 
wyników. Opracowana metoda pozwala na modelowanie procesów w elektrochemicznych 
kondensatorach dużej pojemności z wysoką dokładnością.  

Słowa kluczowe: różniczkowanie ułamkowe, całkowanie ułamkowe, hyper neuron, algorytmy 
genetyczne, identyfikacja parametrów 
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