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THE SCATTERING OF THE SOUND FIELD BY
THIN UNCLOSED SPHERICAL SHELL AND
ELLIPSOID

In this paper the result of solution of the axisymmetric problem of the scattering of
sound field by unclosed spherical shell and a soft prolate ellipsoid of rotation is
presented. Spherical radiator is located in a thin unclosed spherical shell as the
source of acoustic field. The equation of the spheroidal boundary is given in spher-
ical coordinates. Scattered pressure field is expressed in terms of spherical wave
functions. Using corresponding theorems of addition and assuming small eccen-
tricity of ellipse, the solution of boundary value problem is reduced to solving du-
al equations with Legendre's polynomials, which are converted to infinite system
of linear algebraic equations of the second kind with completely continuous opera-
tor. Numerical results are given for various values of the parameters of the prob-
lem.

Keywords: sound field, spherical shell, ellipsoid of rotation, spherical radiator

1. Introduction

Many researchers have solved the problem of sound scattering on spheroid
by different methods. For example, the scattering of the sound field by hard or
soft, prolate or oblate spheroids are considered in [1-7]. The results of the scat-
tering of sound permeable and elastic spheroids are studied in the works [8-12].
Analytical description of the acoustic field scattered by inhomogeneous elastic
spheroid is obtained in [13]. In [14] analytical solution of the problem of diffrac-
tions of plane sound wave on elastic spheroid with arbitrary located spherical
cavity is considered.

In this paper analytical solution of the axisymmetric problem of scattering
of sound field by unclosed spherical shell and soft prolate ellipsoid of rotation is
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presented. A spherical radiator was located in the thin unclosed spherical shell as
the source of the acoustic field. The equation of spheroidal boundary is given in
spherical coordinates. The solution of boundary value problem is reduced to
solving dual equations with Legendre's polynomials which are converted to infi-
nite system of linear algebraic equations of the second kind with completely
continuous operator. Numerical results are given for various values of parame-
ters of the problem.

2. Problem formulation

Let homogeneous space R® contain a thin unclosed spherical shell T'ilocated
on the sphere 'of radius with the center at the point O and a prolate ellipsoid of
revolution S where a is semi-major axis of the ellipse b is a minor axis of the
ellipse a>b (fig. 1). We denote by Dithe area of space bounded by the sphere I
and by Ds the area of space bounded by the ellipsoid S. The distance between

points O and Oiis equal to hi. Then D, =R3\(D, UTUD; US) .

\ D, r
\ 7/
N 7z
e
hy D
S
a
O,

b r

Fig. 1. Geometry of the problem

A point radiator of sound waves oscillating with an angular frequency o is
located at the point O. The areas D; = 1, 2 are filled with the material in which
shear waves do not distribute. Let denote the density of medium by p and speed
of sound by c in Dj.To solve this problem we connect spherical coordinates with
point O and point O,. Spherical shell I'; and ellipsoidal shell S are described as
follows:

I'={r=d,0<06<0,<m, 0<p<2m} (1)

S={r =v(0,), 0<0,<m 0<@<2m} 2)
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where:y(0,)=a/\1-Vsin®0, , V=1—(a/b)’.

Let pc be the pressure of the sound field of the primary point radiator, p; is
secondary sound pressure field in the area Dj, j = 1, 2. The actual sound pressure
is calculated by the formula P; = Re(pje™").The solution of the diffraction prob-
lem is reduced to finding pressures pj, j = 1, 2, which satisfy:

- Helmholtz equation [15, 16]

Ap;+k’p; =0 3)

2 2 2
where A = 5+ 0 s+ — is Laplace’s operator, k = w/c is the wave number,
ox”~ 0y~ 0z
- boundary condition on the surface of spherical shell I'; (acoustically hard
shell):

a
—(pe+pi)|. =0, 4)
om I

where # is the normal to the surface I,

- boundary conditions on the surface of ellipsoidal shell S (acoustically soft
shell):

p2|s =0 (5)

and the condition at infinity [16]:

M—oo

lim r (ama—(M)—ikpz (M)j —0 (6)
T

where M is an arbitrary point at the space.

Condition of continuity of the pressure on the open part of the spherical
shell \T, is given by:

(pC TP )|r\r1 :p2|l"\F1 ()

and normal derivative on the surface of the sphere I is:

(b +p1 ) _
o o2, ®
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Initial pressure of the sound field can be represented in the form [16]:
o0
pe(r,0) =Pexp(ikr) /r =P £,h{) (kr)P, (cos®), f, =ikdy, 9)
n=0
where h{D (x) are spherical Hankel’s functions, P, (cos ) are Legendre’s poly-
nomials [17], 8, is Kronecker’s delta, P is a constant.
The pressure of the scattered sound field is represented as superposition of

basic solutions of Helmholtz equation in spherical coordinates [18, 19] taking
into account the condition at infinity (6):

p; (r,0) =P > c,j, (kr)P, (cosB), r<d, (10)
n=0
P> =pP(r,0) + p$2 (11,0,), (11)
pd) (r PZ x,h{) (kr)P, (cos®), r>d, (12)
p(22) (rl, 61 PZ ynh(l) krl) (COS 91) n >y(61), (13)
n=0

where jn(x) are spherical Bessel’s functions of first kind [17]. Unknown coeffi-
cients ¢, Xn, yn must be determined from the boundary conditions.

3. Boundary conditions

Let's perform boundary conditions (4), (7), (8). For this purpose the func-
tion pgz) (rl, 91) through spherical wave functions in the coordinate system with

origin at the point O can be determined using the formula connecting spherical
wave functions [18, 19]:

) (ki )P, (cosO;)= D" Ay (hy)jy (k)P (cos0), r<h,, (14)
k=0
Then
p? (r, PZ Pn Jn (kr)P, (cosB), Z YA (hy) (135)

k=0



The scattering of the sound field by thin unclosed spherical shell... 171

where
k+n
A (b)) =(2k+1) 37 i bFNO RO (khy) (16)
Gz‘k—n‘

bg’oqo) =(nq00| csO)2 , (nq00]| c0) is the Klepshev-Gordona coefficient [16].

According to representations (10)-(12), (15), the boundary condition (5)
taking into account the condition of orthogonality of Legendre polynomials on
the interval [O; TE] becomes:

d
£y g (l)(io) +¢p d_F,J"(E"O)

£o=kd, n=0,1,... .

d. d4
dahn (&0) Pn déjn(éo) (17)

Let us perform the boundary condition (4) on the surface of the spherical
shell and the condition of continuity (7). Let us exclude factors c, in the resulting
equations using the representation (17), and we obtain dual equations in Legen-
dre's polynomial:

o0

anah(l) cose an P (cosG), 0<0<86,,
’ (18)
< x, -1
zdipn(cose):o, 0, <0<
n=0 —
da Jn(go)
Let new coefficients be
d .
X = Xn —Jn (&) +fh,n=0, L,..., (19)
dg
and a small parameter is
g :l_q_ﬁi (i) (1)(§) g :O(n_z) n>>§ (20)
n 21’1+1d§0 0 d(io 0/ &n ’ 0

As a result dual equations (18) take the form:
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(2n+1)(1-g, )X, Py (c050) = > (2n+1)(F, +5,,)P, Jeos6), 0<6 <0y,
0 n=o0

21
X Py (cos6) =0, 6y <0<m,

M

n

M

n=0

where

= .o d o) ~ | d .

£, =4, —hD(g)/@n+D), By =4iE8P,——n (&)/@n+D)  (22)
dg, dgg

Dual equations (18) are converted to infinite system of linear algebraic
equations of the second kind with the completely continuous operator using the
integral representation for Legendre’s polynomials [19, 20]:

Xy = 2 2R (00)Xy = X (B + Fie R (80),  n=0.1...., (23)
k=0 k=0

where

1|sin(n—-k)0, sin(n+k+1)6
Rnk(GO):;|: ( ) 0 ( ) 0 ’

n-k n+k+1

, (24)
sin(n —k)@o
_— =0,.
n—k

n=k

To analyze boundary conditions (5) we express the function p(zl)(r, 9)

through spherical wave functions in the coordinate system with origin at the
point O using formula [18,19]:

h{) (kr)P, (cos0) = 3" By (hy)ji (k)P (cos0)), 1 <hy, (25)
k=0
then
Y (11, 0,) =P 7., (kr)P, (cos0;), z, =Y x,Bp, (). (26)
n=0 p=0

where



The scattering of the sound field by thin unclosed spherical shell... 173

k+n
By (h))=(2k+1) > (=) b0 h O ieh ) 7)

G%k—d

Taking into account the representation (13), (26) and boundary conditions
(5) we obtain

> Zain (ky(0))) Py (cos0; )+ D yuh{ (koy(0;))P, (cos6)=0  (28)
n=0 n=0

We transform the relation (28) and assume that the eccentricity of ellipse is

hz«[l—bz/a2 <<1,a>b, then
2

4
V=-h?-h*-h®+0h*), y(6)) ={1—h7sin2 0, —}‘7(sin2 0, -
(29)
6
“3in Glj—h—(sinz 0, — >sint 0, + sin® 91] + O(hg).
4 2 2 8

Now we factorize spherical functions j,, (y(el)), hg) (v(6,))in series with re-

spect to small parameter h:

n (kv (01)) =1 (&1) -

in%o, . ., .,
sz 1<§1Jn (il)hz—[élJn (il)[ ) 3

) Msﬂl“ eth4 _[E-,lj' (él)(ssin6 91 _ 3Sin4 91 " Sinz 91 ] _ (30)
8 n

sin’ 0, 3sin? 0, ]_

16 4 2

4 16 48

- 4 - 6 3 .m - 6
. sin" 0, 3sin’0 & jn(&r)sin” 0
Similar expansion as (30) holds for the function hg) (v(6y)), but instead of

the function j, (él) is the function hg)(ﬁl) .Expansions for spherical functions
can be written as follows:

Jn (kY(el )) = pgl()) E)+ Pg)(il)smz 0, + p$12)(&_31)Sin4 0, + Pg3)(§1)51n6 6,

(1)
b (ky(8))) =m{) (&) + m{) (&) sin” 0 + i) (& )sin® 0; + ) sin® 6y
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where

P (&) =n (81): P& =07+t nO)j, (81)/2,

p@ (&)= (3}14+6h6)§1j;1(§1)/8+(h4+2h6)§12j§'1(§1)/8v

P (&) = —(158 11, (8) +9&7 jn (&) +&] if (€)h® /48,

il e) b)), D =—e[n 4+ 0] 2
m;2>(gl):(3h4+6h6)&1( ()(él)) /8+(n’ +2h6)§12(hg)(‘;’1)) 'S

mf (¢)) ={15&1 (hﬁﬂ)(&l ))' +98] (hﬁﬁ)(a] ))" +e} (hg)(gl ))W}P /48,

(32)

Let us exclude factors z, in (28) using the representations (27), (19) and ex-

pansions (31). We multiply the resulting equation by Py(cos0)sin6d6, s =

2,..., and integrate from 0 to 7, then we have:

Z anns (E_vl) =—ik z BOn (hl )

n=0 n=0

ZXn ang '§0:§1’h1)+

where

ans[80-815hy) = a2 (&o) ZBnm (hy)ans (&)

dio
ans(&) =pt +p£)<&1)1£s) P et +pP e,

bas (&) =m( 1) + m e 1) + mP e 1) + m e,

I(O‘)—J.P (cosB)P, (cosB)sin®BdO, o =1,3,5,7
0

ans(él) 5 S :0,1,...,

0, 1,

(33)

(34)

(35)

The values of the integrals Ifl(:) are given in Appendix. So we have the fol-

lowing connected system of linear algebraic equations for the unknown coeffi-

cients from Egs. (23), (33):
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o0

&, ~ d
Z (gnRsn (60) - 8ns )Xn + Z bns (§0ﬂ607h1)3’n = 4&(3)kahg) (éO )RSO(GO)’
n=0 n=0 0

z Xnéns liO*élahl ) + Z anns(él) = _lkz BOn (hl) ans(al)a S= 07 19 27 wees
n=0 n=0 n=0

(36)

where

~ i d o
s (B0-00:h1) =455 3 2y (20 )Rap (B) Ay (1) (2 +1) (37)
p=0 >0
4. Calculation of the far field
On the basis of formula:

hy (ki )P, (cos0y) = > A lh Ihl(,l) (kr)Py (cosB), r>hy,

p=0 (38)

5 p+n
Aplle X (20+1)i7P™ bg"’“O) i (Khy)

G:‘p—n‘

we have representation of the functionp(zz) (r1,0;) in coordinate system with

origin at the point O

p$? (r,0)=P> U,h{) (kr)P, (cos0), U,(h)=X Ay Iy, (39
n=0 p=0

Using the asymptotic expression for the function hgl)(kr) [16]:
hD k)~ 0)*e /kr, kr—>oo (40)
we obtain representation of pressure in the far field zone:
ikr

(S
pa(r,0)=P EG(Q) (41)

where



176 G. Shushkevich, S. Shushkevich, F. Stachowicz

GO= 3 ™ XSy (o) + o+ 3 R 0)yy [Palccs) (42
n=0 E-’0 p=0

The function G(0) for some parameters of the problem is calculated using a
computer algebra system Mathcad [21]. Spherical functions were calculated by
means of built-in functions. Derivatives of spherical functions were calculated
by means of the recurrent formulas [17].The infinite system (36) was solved by
the method of truncation [16]. The computational experiment showed that the
truncation order for the considered parameters of the problem can be equal to
25. It provides the solution of the system (36) with accuracy 10, Figure 2 shows
plots of the function G(0) for some values of the angle Ooof thin unclosed spheri-
cal shell I'y. The parameters are equal to: hy=1.0m,a=0.2m,b=0.9a, k=1.5
m'. Figure 3 shows plots of the function G(0) for some values of the wave num-
ber k.The parameters are equal to: hj =1.0 m,d=0.2 m,a=0.2 m, b=0.9a, 0
= 90°. Figure 4 shows plots of the function G(0)for some values b/a and parame-
ters are equal to: h; =0.7m,d=0.2m,a=0.2m,k=4m", 0= 90°.

25F=a T I
\\‘ == 80 =90
225 ~ 60=120 H
. 2 heee B0=135
? -_.:\' " T === 80=150 M
= B A
= i \\ &
= 15 T ‘\. e
‘t---AP'
1.25 :_:_‘
1

0 20 40 60 80 100 120 140 160 180

Variable 6

Fig. 2. Graph of function G(0) for some values of the angle 0o

35 coileerdmmal — k=15
i "‘\. hesa k=2
5 ~J. eeek=25
T 25 S~ — =
2 >
= = e T
= | BN .
1.5
1 ----- == b ] e R RPN RN N
0.5
0 20 40 60 8 100 120 140 160 180
Variable 6
Fig. 3. Graph of function G(0) for some values of the wave number k
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5. Conclusions

The solution of the problem of the scattering of sound field by unclosed
spherical shell and a soft prolate ellipsoid is reduced to solving dual equations
in Legendre's polynomials using the addition theorem for spherical wave func-
tions. The spherical radiator is considered as the source of the sound field locat-
ed within the thin unclosed spherical shell. The equation of spheroidal boundary
is considered in spherical coordinates. Following tasks were carried out:

— scattered pressure field is expressed in terms of spherical wave functions,
— dual equations are converted to the infinite system of linear algebraic
equations of the second kind with the completely continuous operator,

— numerical results for various values of the parameters of the problem were

computed.

The developed methodology and the software can be practically used in the

manufacture of sound screens.

Appendix

The values of the integrals 1'%
Using recurrence relations for Legendre polynomials

) n(n-1) 2n? +2n -1
xR (x) (2n-1)(2n+1) Paa (%) + (2n—1)(2n+3)P“ (x)+

. (n—1)(n+2)

(2n+)(2n+3)

Pn+2 (X)’
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X4Pn (x)— n(n—l)(n—2)(n—3) : 4(x)+

- (2n+1)(2n—1)(2n—3)(2n—S)P B

n(n—l)(4n2—4n—14) 3(2n4+4n3—2n2—8n+3)
NS R ) M A ) [ [ [ R
(n+1)( n+2(4n +12n— 6)

P (n+1)(n+2)(n+3)(2+4)
(2n 1)(2n+1)(2n+3)(2n+7) "

(Zn +l)(2n +3)(2n + 5)(2n +7) n+4 (X)

(x)+

and the value of the integral

2
Sn IP (cos0)P,(cos0)sinBd0=12n+1""
0 0,s#n,
we obtain the following values of integrals
—2n(n—1)
s O = _25
(2n-3)(2n—1)(2n+1)
4(sz+s—1)
3 j—
5 = (2s—1)(2s+1)(2s+3)’ ’
—2(n+1)(n+2) s=ni2,
(2n+1)(2n+3)(2n+5)
0,s#n,
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(2n-7)(2n-5)(2n-3)(2n-1)(2n+1)’
8n(n— 1)( n +n+4)
(2n-5)(2n-3)(2n-1)(2n+1)(2n+3)’

4(3n* +6n° ~8n” ~14n+12)]
5 - (n—-3)(2n—1)(2n+1)(20+3)(20+5)" "
8(n+1)(n+2)(-n>~3n+2]
(2n-1)(2n+1)(2n+3)(2n+5)(2n+7)’

2(n+1)(n+2)(n+3)(n+4)
(2n+1)(2n+3)(2n+5)(2n+7)(2n+9)’

0,s#n,

-2(n-5)(n-4)(n-3)(n-

s=n-—2

)(a-1)n

~12n(n-3)(n-2)(n~1)(-n’+3n+7)

~6n(n—1)(5n* ~10n’ ~59n + 64n +180)

8(5n6 +15n° —52n* —129n3 +155n2 +222n —180)

2
(2n-1 1)(2n—9)(2n— 7)(2n —5)(2n —3)(2n —1)(2n +1)’ e
(2n-9)(2n-7)(2n-5)(2n-3)(2n-1)(2n +1)(2n +3)’ .

(2n-7)(2n-5)@n-3)(2n-1)(2n+1)(2n+3)(2n+5)"

2n(n-3)(n-2)(n-1) s—n_4.

s=n+2,

s=n+4,

I(7)_ , S=n,

sn” =) (2n-5)(2n-3)(2n—-1)(2n+1)(2n+3)(2n+5)(2n +7)
~6(n+1)(n+2)(5n* +30n° +n’ ~132n +72)
(2n—3)(2n—1)(2n+1)(2n+3)(2n+5)(2n+7)(2n+9)
12(n+1)(n+ )(n+3)(n+4)(n2+sn_3)
(2n-1)(2n+1)(2n+3)(2n+5)(2n+7)(20+9)(2n +11)’
—2(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)
(2n+1)(2n+3)(2n+5)(2n+7)(20+9)(2n +11)(2n +13)’

0,n#s.

N

if s=

n+2

=n+4,

Ss=n+6,
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ROZPROSZENIE POLA AKUSTYCZNEGO ZA POMOCA CIENKIEJ
NIEZAMKNIETEJ KULISTEJ POWLOKI ORAZ ELIPSOIDY

Streszczenie

W niniejszym opracowaniu zaprezentowano wyniki rozwigzania osiowosymetrycznego pro-
blemu rozproszenia pola dzwickowego przez niezamknigta powtoke kulistg oraz lekko wydtuzona
elipsoide. Radiator kulisty znajdujacy si¢ w cienkiej niezamknigtej powtoce kulistej jest Zzrodtem
pola akustycznego. Réwnanie granicy kulistej podane jest we wspotrzednych sferycznych. Roz-
proszone pole ci$nienia jest wyrazona w funkcji fal sferycznych. Stosujac odpowiednie twierdze-
nia dodawania i przy zatozeniu zbyt matej mimosrodowosci elipsy, rozwigzanie problemu warto-
$ci brzegowych jest ograniczone do rozwigzania podwojnych rownan wielomianéw Legendre'a,
ktore przeksztatca si¢ w nieskonczony uktad liniowych rownan algebraicznych drugiego rodzaju z
w pelni cigglym operatorem. Wyniki obliczen numerycznych sa podane dla réznych wartos$ci ana-
lizowanych parametrow.
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