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Abstract 

Macroscopic analyses of plastic forming processes give only the overall description of the problem without the 

consideration of mechanisms of plastic deformation and the microstructure evolution. For the consideration of 

these processes, numerical simulations within crystal plasticity include the change of texture, anisotropy, and 

strain hardening of the material are used. In this paper, a crystal plasticity rate-independent model proposed by 

Anand and Kothari is applied for numerical analyses of polycrystalline materials. The slip was considered as 

the main mechanism of the plastic deformation. Basic constitutive equations of crystal plasticity for large de-

formation theories are presented. The selected results of elastic-plastic problems obtained using both macro- 

and micro- scales software for the explicit and implicit integration are featured here. The heterogeneous distri-

bution of strain and stress in different grains are obtained, which is associated with the various crystal orienta-

tion. The crystal plasticity modelling of materials subject to plastic deformation involves not only the infor-

mation about the change of a material’s shape in a macro-scale, but also describes the phenomena occurring in 

material in a micro-scale. 
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1. Introduction 

Numerical analyses of elastic-plastic problems of materials forming and processing can be solved 

on macroscopic level using the classical plasticity theory or on the microscopic one using crystal plas-

ticity. This first approach describes the behaviour of materials under loading only in  

a macroscopic scale without taking into consideration its micromechanical changes. In such macro-

scopic analyses, a variety of models, e.g. Prager, Ziegler, Johnson-Cook, Ohno-Wang, Frederick-Arm-

strong, and Chaboche ones are commonly applied (Buljak et al., 2021; Genna, 1993; Remache et al., 

2020; Chen et al., 2005; Schäfer, 2019; Sajjad et al., 2019). Material processing analyses including only 

the macroscopic behaviour of materials under cyclic loading were tested by authors in the past. Wójcik 

and Skrzat (2020) applied the Frederick-Armstrong model in order to  predict the stress-strain response 

of a material subject to the cyclic loading test. Authors were also testing the application of both Freder-

ick-Armstrong and Chaboche models in numerical analyses of the KOBO extrusion (Wójcik & Skrzat, 

2022b; Wójcik & Skrzat, 2021). Although the good convergence between experimental and numerical 

results is obtained, only the macroscopic response of the material was considered. It gives the incomplete 

description of the material behavior, especially in the case of large deformation processes, Severe Plastic 

Deformation (SPD) processes in which the significant refinement of a microstructure is a very important 

feature. 

The crystal plasticity (CP) theory presents a full explanation of a material plastic deformation under 

loading and includes both the change of the material shape in a macro scale, as well as, its microstructure 

evolution and grains anisotropy (Men & Meng, 2022). The CP models link different scales of the prob-

lem considered – from macro- to micro- and to nano- levels. The CP theory has been developed as a 
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useful tool to describe the mechanical response of polycrystalline materials on all scales from single 

crystals to whole engineering parts in last thirty years (Dabiri et al., 2018). 

In the CP approach, materials are considered as polycrystals with a large number of grains in which 

each grain has a specific crystallographic orientation. The single crystal has the three-dimensional ar-

rangement of atoms - FCC (face centered cubic), BCC (body centered cubic) or HCP (hexagonal close 

packed) (Ramos et al., 2020). The level of the plastic deformation in a polycrystalline material varies 

from one crystal to another, which depends on, e.g. the orientation, geometry, neighboring crystals and 

loading conditions (Yang & Park, 2003).  

Contrary to the classical theory of plasticity, the CP takes into consideration the mechanisms of 

plastic deformation in materials – mainly slip and twinning. The CP models based on the slip are well-

known and developed in the CP theory (Bridier et al., 2009; Messner et al., 2017; Alankar et al., 2011). 

Models assuming twinning are in the intensive development at present. Liu et al. (2021) proposed the 

coupled crystal plasticity finite element-phase field model with kinetics-controlled twinning. Abdolvand 

et al. (2011) developed the crystal plasticity model assuming the twinning reorientation. The numerical 

modelling of twinning-induced plasticity using crystal plasticity finite element method (CPFEM) is de-

scribed in by Khan et al. (2016). Apart from the heterogeneity of plastic strain in crystalline materials 

caused by the anisotropy of grains, a lot of CP models available assume some simplifications. In the 

Taylor model, all grains have the same strain state common to the global strain (Pramanik, 2021). Every 

grain is deformed in the same way  as the representative volume element (RVE) here. The Sachs model 

assumes the same stress state for all grains which is the same as   the global stress state of the material 

(Romanova, 2022). It results in the discontinuity of displacements. In the self-consistent model, every 

grain is considered as an ellipsoidal heterogeneity placed in a uniform space representing the polycrys-

talline structure (Li et al., 2021). 

Apart from popular models, there are also new approaches in order to simulate the behaviour of  

a material under loading based on the CP theory. The microstructure-based CP model in order to eval-

uate the shear deformation behavior of a material under cyclic load is described by Yang et al. (2022). 

The new twinning-induced crystal plasticity model in terms of the thermomechanical framework and 

with a new integration method, is developed by Khan and Alfozan (2019). The fully implicit integration 

procedure for a twinning-induced plasticity model based on the CP approach is also presented by Khan 

et al. (2022). The propositions of other new models using the CP theory in order to simulate the behav-

iour of material in a microscopic scale are also available in literature (Li et al., 2022; Ibragimova et al., 

2021; Li et al., 2020; Jeong & Voyiadjis, 2022). 

The plastic deformation due to the dislocation slip was considered in this paper. Anisotropic slip 

occurs only in  selected directions and in selected crystalline planes which define slip systems (Nguyen, 

2021). Additionally, the dislocation slip does not change the crystalline orientation of a material. All 

atoms in a lattice maintain the same distance with each other, therefore (Faul, 2021). Polycrystalline 

structures have a different number of slip systems determined by n and m vectors which describe the 

normal to the slip plane and the slip direction, respectively. For FCC structure considered here, four sets 

of slip planes {111} and three close packed slip directions <110> in each plane are determined, which 

gives a combination of twelve slip systems (Weinberger, 2013). The plastic deformation caused by the 

slip occurs more easily in crystals which have  higher number of the slip systems and which are located 

more favorably against the a load direction (Wójcik & Skrzat, 2022a). 

The activation of slip systems is described by Schmid’s law. The yielding in a crystal takes place 

when the resolved shear stress (𝜏𝛼) of a selected slip system exceeds its critical resolved shear stress - 

𝜏𝐶𝑅𝑆𝑆 (Eq. 1) (Mlikota & Schmauder, 2018). 

𝜏𝛼 = 𝜎𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆 > 𝜏𝐶𝑅𝑆𝑆                                (1) 

where: 𝜎 is a tensile stress, 𝜆 is an angle between tensile axis and the slip direction and 𝜙 is an angle 

between tensile angle and the slip plane normal. The 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆 coefficient defines the Schmid factor. 

Numerical elastic-plastic analyses of a copper alloy subjected to simple tension tests are presented 

here. The simulations were done for different shapes of samples. The material was modelled as a poly-

crystalline anisotropic material with the random distribution of grains. The CP analyses were performed 

using open -source NEPPER and FEPX, and commercial Simulia Abaqus softwares. The Anand and 

Kothari approach was applied here. It is a relatively simple, effective and efficient numerically model 

in order to calculate the stress increment. The main advantage of the method is that the Anand and 

Kothari procedure presents the way to choose the slip systems which is a long-lasting problem of the 

rate-independent CP theory. Additionally, the CP approach developed by Anand and Kothari is 
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implemented in the PRISMS commercial software which can be used as a reference solution in order to 

check the correctness of a solution. The results obtained presents the potential of CP as an effective 

numerical approach  for  solving engineering problems, including modeling of materials forming pro-

cesses characterized by the large plastic deformation. The micromechanical analyses using CP theory 

give a more complete description of the material behavior under loading than classical macro-mechan-

ical approaches. 

2. Constitutive equations of Crystal Plasticity theory 

The rate-independent CP constitutive model for a single crystal FCC structure developed by Anand 

& Kothari (1996) is used in this paper. Based on assumption of  deformation decomposition into elastic 

and plastic parts CP constitutive equations are as follows: 

1) Multiplicative decomposition of deformation gradient 𝑭 into elastic 𝑭𝑒 and plastic components 𝑭𝑝 

is the following (Eq. 2): 

𝑭 = 𝑭𝑒𝑭𝑝                                (2) 

Elastic part includes the information about rotation and stretching, plastic part influences on plastic 

shearing on crystallographic slip systems and defines dislocations (Fig. 1) (Paudel et al., 2021). 

 

 

Fig. 1. Explanation of elastic and plastic parts of the deformation gradient tensor 

 

2) The macroscopic velocity gradient 𝑳 is decomposed additively into elastic and plastic parts (Eq. 3), 

as well as into symmetric and antisymmetric ones (Eq. 4): 

𝑳 = 𝑳𝑒 + 𝑳𝑝 = 𝑭̇𝑒(𝑭e)−1 + 𝑭𝑒𝑭̇𝑝(𝑭𝑝)−1(𝑭𝑒)−1                                (3) 

𝑳 = 𝑫 +𝜴                                (4) 

where: 𝐋e and 𝐋p are elastic and plastic velocity gradient tensors, respectively; 𝑫 is symmetric defor-

mation velocity tensor and 𝜴 is an antisymmetric spin (Eq. 5-6). Similarly to tensor 𝑳, tensors 𝑫 and 𝜴  
are additively decomposed into elastic and plastic parts in line with Eq. 7-8: 

𝑫 = 𝑠𝑦𝑚(𝑳) =
1

2
(𝑳 + 𝑳𝑇)                                (5) 

𝜴 = 𝑎𝑠𝑦𝑚(𝑳) =
1

2
(𝑳 − 𝑳𝑇)                                (6) 

𝑫 = 𝑫𝒆 +𝑫𝒑                                (7) 

𝜴 = 𝜴𝒆 +𝜴𝒑                                (8) 
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3) On the basis of the polar decomposition, the elastic part of the deformation gradient might  be ex-

pressed as a multiplication of a rigid body tensor 𝑹𝑒 and the right stretching tensor 𝑼𝑒 (Eq. 9). Using 

the 𝑹 tensor, the elastic part of a spin might be written as (Eq. 10): 

𝑭𝑒 = 𝑹𝑒𝑼𝑒                                (9) 

𝜴𝒆 = 𝑹𝒆 ∙ 𝑹̇𝑒𝑇                                (10) 

4) The macroscopic plastic velocity gradient links different scales of the problem considered (macro- 

and micro-) (Men & Meng, 2022; Ryś et al., 2022). It might be expressed as the superposition of 

shear deformation caused by the crystallographic slip (Eq. 11): 

𝑳𝑝 = ∑ 𝛾̇𝛼𝑺𝛼𝑛
𝛼=1                                 (11) 

where: 𝛾̇𝛼 is the shearing rate on the 𝛼 slip system, 𝑛 is a total number of slip systems and 𝑺𝛼 is 

the Schmid tensor for the slip system 𝛼 defined as follows (Eq. 12): 

𝑺𝛼 = 𝒎𝛼⊗𝒏𝛼                                (12) 

where: 𝒎𝛼 is the slip direction and 𝒏𝛼 defines the slip plane normal, as well as, 𝒎𝛼 and 𝒏𝛼 are orthog-

onal (Nibur & Bahr, 2003). Assuming the microscopic level, the plastic deformation velocity gradient 

𝑫𝒑 and the plastic spin 𝜴𝒑 tensors are expressed in line with the following equations (Eq. 13-14) (Deng, 

2014). 

𝑫𝑝 =
1

2
(𝑳𝑝 + 𝑳𝑝𝑇) = ∑ 𝒑𝛼 ∙ 𝛾̇𝛼𝑛

𝛼=1                                 (13) 

𝜴𝑝 =
1

2
(𝑳𝑝 − 𝑳𝑝𝑇) = ∑ 𝝎𝛼 ∙ 𝛾̇𝛼𝑛

𝛼=1                                 (14) 

where:  𝒑α and 𝝎α are symmetric and asymmetric tensors defining the Schmid tensor on the α slip 

system defined as follows (Eq. 15-16). 

𝒑α =
1

2
(𝒏𝛼⊗𝒎𝛼 +𝒎𝛼⊗𝒏𝛼)                                (15) 

𝝎α =
1

2
(𝒏𝛼⊗𝒎𝛼 −𝒎𝛼⊗𝒏𝛼)                                (16) 

5) The resolved shear stress which causes the shear on a given crystallographic plane in a given crys-

tallographic direction is defined as (Eq. 17) (Frydrych & Kowalczyk-Gajewska, 2016): 

𝜏𝛼 = 𝝈: 𝑺𝛼 = 𝝈: (𝒎𝛼⊗𝒏𝛼)                                (17) 

6) Based on Schmid’s law, the CP hardening model of polycrystalline material and shear rate 𝛾̇𝛼 for 

the 𝛼 slip system evaluate as follows (Eq. 18): 

𝛾̇𝛼 = 𝛾̇0 (
|𝜏𝛼|

𝑔𝛼
)
𝑘

𝑠𝑔𝑛(𝜏𝛼)                                 (18) 

where: 𝛾̇0 is the reference shear strain rate on the 𝛼 slip system, 𝜏𝛼 is the resolved shear stress on the 𝛼 

slip system, 𝑘 is the rate sensitivity coefficient, 𝑔𝛼 is the critical shear stress on the 𝛼 activated slip 

system to govern the isotropic hardening of the crystal and 𝑠𝑔𝑛 is a signum function. For a rate-inde-

pendent CP, 𝑘 → ∞ (Yaghoobi et al., 2019). 

7) The shear rate 𝛾̇𝛼 which consists of the effect of a backstress related with the kinematic hardening 

is written by the following (Eq. 19): 

𝛾̇𝛼 = 𝛾̇0𝑠𝑔𝑛(𝜏
𝛼 − 𝑥𝛼) (

|𝜏𝛼−𝑥𝛼|

𝑔𝛼
)
𝑘

                                 (19) 

where: 𝑥𝛼 is a backstress describing the nonlinear kinematic (directional) hardening of the crystal on 

the 𝛼  slip system.  

8)  The evolution of a slip resistance (𝑔̇𝛼) for the 𝛼 slip system is described as follows (Eq. 20): 
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𝑔̇𝛼 = ∑ ℎ𝛼𝛽𝛾̇𝛽𝛽                                 (20) 

where: ℎ𝛼𝛽 is a hardening modulus defining the variation of slip resistance for the 𝛼 slip system due to 

the slip rate on 𝛽 slip system and might be defined as a relationship assuming both hardening and re-

covery (Eq. 21) (Asaro & Needleman, 1985): 

ℎ𝛼𝛽 =

{
 
 

 
 ℎ0

𝛽
[1 −

𝑔𝛽

𝑔𝑠
𝛽]
𝛼𝛽

𝑓𝑜𝑟 𝛼 = 𝛽

ℎ0
𝛽
𝑞 [1 −

𝑔𝛽

𝑔𝑠
𝛽]
𝛼𝛽

 𝑓𝑜𝑟 𝛼 ≠ 𝛽

                                (21) 

where: 𝑞 is a latent hardening ratio, ℎ0
𝛽

 is a hardening parameter for 𝛽 slip system, 𝑔𝑠
𝛽
 defines the slip 

resistance at hardening saturation for 𝛽 slip system, and 𝛼𝛽 is a material constant for 𝛽 slip system 

defining the sensitivity of the hardening moduli to the slip resistance (Khan & Alfozan, 2019). It is 

assumed that ℎ𝛼𝛽 is a self-hardening modulus for 𝛼 = 𝛽 or for 𝛼 ≠ 𝛽, ℎ𝛼𝛽 is a latent hardening one 

(Yaghoobi et al., 2019). 

The Anand & Kothari model presented above indicates very good compatibility with the experi-

mental data in most cases. Acar et al. (2017) obtained a very good convergence between the microstruc-

ture measured experimentally and achieved in simulations using the Anand and Kothari model for a 

titanium-aluminum alloy. The research of Balasubramanian & Anand (2002) also confirmed the very 

good agreement between numerical and experimental stress-strain response, strain-rate history and tem-

perature-history effect for aluminum with the use of Anand and Kothari model. 

3. Numerical integration of Crystal Plasticity constitutive equations 

The numerical calculations of elastic-plastic problems based on the CP theory with the use of equa-

tions presented in Section 2 are time-consuming and complex. A lot of computation steps are required 

in such analyses and the calculations are done iteratively in a loop. These steps are shown in Fig. 2. 
 

 

Fig. 2. Diagram showing the complexity of calculations using the CP theory 

 

The implicit integration procedure of constitutive equations is presented here. Five state variables 

{𝑭(𝑡), 𝑭𝑒(𝑡), 𝑭𝑝(𝑡), 𝝈(𝑡) Cauchy stress and 𝑔𝛼(𝑡)} at initial time 𝑡 undergo the incremental defor-

mation, and then they are updated for the time 𝑡1 = 𝑡 + ∆𝑡. The given data are 𝑭(𝑡), 𝑭(𝑡1), stress 𝑺(𝑡), 
𝑔𝛼(𝑡) and time- independent parameters defining the slip system (𝒎0

𝛼 and 𝒏0
𝛼). The 𝑭𝑝(𝑡1), 𝑻(𝑡1) and 

𝑔𝛼(𝑡1), as well as the information about the orientation of the slip system, are calculated. Unfortunately, 

there are only five independent plastic strain components available (six plastic strain components are 

constrained by the incompressibility condition, while potentially twelve slip systems should be deter-

mined. In this research we use the integration procedure proposed by Anand and Kothari which is sum-

marized as follows. 

1) Firstly, the trial elastic strain 𝐸𝑒(𝑡1)
𝑡𝑟 is calculated in line with the Eq. 22-24. 

𝑭𝑒(𝑡1)
𝑡𝑟 = 𝑭(𝑡1)𝑭

𝑝(𝑡1)                                (22) 
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𝑪𝑒(𝑡1)
𝑡𝑟 = (𝑭𝑒(𝑡1)

𝑡𝑟)𝑇𝑭𝑒(𝑡1)
𝑡𝑟                                (23) 

𝑬𝑒(𝑡1)
𝑡𝑟 =

1

2
[𝑪𝑒(𝑡1)

𝑡𝑟 − 𝑰]                                (24) 

where: 𝑪𝑒 is elastic right Cauchy-Green strain tensor and 𝑰 is the identity matrix. 

2) Based on the trial elastic strain the 𝑺∗(𝑡1)
𝑡𝑟 trial stress tensor is determined (Eq. 25). 

𝑺∗(𝑡1)
𝑡𝑟 = ℓ[𝑬𝑒(𝑡1)

𝑡𝑟]                                (25) 

where: ℓ is the fourth order elastic stiffness tensor. 

3) The trial resolved shear stress 𝜏𝛼(𝑡1)
𝑡𝑟 on each slip system expressed by the Schmid tensor is cal-

culated as follows (Eq. 26-27):  

𝜏𝛼(𝑡1)
𝑡𝑟 = 𝑺∗(𝑡1)

𝑡𝑟 ∙ 𝑺0
𝛼                                (26) 

𝑺0
𝛼 = 𝒎0

𝛼⊗𝒏0
𝛼                                (27) 

In Eq. 26, 𝑺0
α Schmid tensor for α slip system is the same in both relaxed and undeformed configuration 

because plastic slip does not directly affect the crystallography of the underlying lattice (Faul, 2021). 

4) Assuming some simplifications, the following relationship can be written as (Eq. 28): 

𝑠𝑖𝑔𝑛[𝜏𝛼(𝑡1)
𝑡𝑟] = 𝑠𝑖𝑔𝑛[𝜏𝛼(𝑡1)]                                (28) 

The determination of active slip systems and shear increments require long-lasting computations in rate-

independent CP theory. The following approach for the determination of active and inactive slip systems 

based on the plasticity condition (Eq. 29) might be applied. 

𝑓𝛼 = |𝜏𝛼| − 𝑔𝛼                                (29) 

According to the Kuhn-Tucker special consistency conditions, the slip system is inactive if 𝛾̇𝛼 = 0 

and |𝜏𝛼| < 𝑔𝛼 or if |𝜏𝛼| = 𝑔𝛼 and the trial stress rate points to the inside of the yield surface. For active 

slip systems, |𝜏𝛼| = 𝑔𝛼, 𝛾̇𝛼 > 0 and the trial stress rate points to the outside of the yield surface 

(Sundararaghavan & Zabaras, 2008). In order to determine the active slip systems and corresponding 

slip increments, the consistency condition in the form of linear equations (Eq. 30) is applied. 

∑ 𝐴𝛼𝛽𝛾̇𝛽 = 𝑏𝛼𝛽𝜖𝐴                                 (30) 

in which: 𝐴 is a set of potentially active slip systems and matrix 𝐴𝛼𝛽 defines potentially active slip 

systems. At the end of calculations, the size of 𝐴𝛼𝛽 matrix is reduced to m by m where 𝑚 means the 

number of active slip systems. The search for active slip systems relies on the solving of the system of 

linear equations above (see Eq. 30) until all systems meet the requirement 𝛾̇𝛽 > 0. If the system is 

inactive, it is removed from the set of active slip systems and the size of matrix A is reduced, therefore 

(Li et al., 2021).  

5)  Next the plastic deformation gradient 𝑭𝒑(𝑡1) at time 𝑡1 is updated (Eq. 31).  

𝑭𝒑(𝑡1) = {𝑰 + ∑ 𝑠𝑖𝑔𝑛(𝜏𝛼(𝑡1)
𝑡𝑟)∆𝛾𝛼𝑺0

𝛼𝑚
𝛼=1 }𝑭𝑝(𝑡)                                (31) 

6) Then it is necessary to check if 𝑑𝑒𝑡𝑭𝒑(𝑡1) = 1. If this condition is not satisfied, 𝑭𝒑(𝑡1) is normal-

ized as follows (Eq. 32). 

𝑭𝒑(𝑡1) = [det 𝑭
𝑝(𝑡1)]

−1/3𝑭𝑝(𝑡1)                                 (32) 

7) In the further step, the elastic deformation gradient 𝑭𝒆(𝑡1) and stress tensor 𝑺∗(𝑡1) are computed 

(Eq. 33-34). 

𝑭𝒆(𝑡1) = 𝑭(𝑡1)𝑭
𝑝−1(𝑡1)                                  (33) 

𝑺∗(𝑡1) = 𝑺
𝑒(𝑡1)

𝑡𝑟 − ∑ {∆𝛾𝛼𝑠𝑖𝑔𝑛(𝜏𝛼(𝑡1)
𝑡𝑟)}𝑚

𝛼=1 ℓ[𝑠𝑦𝑚(𝑪𝑒(𝑡1)
𝑡𝑟𝑺0

𝛼)]                                  (34) 
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8) At the end of the integration procedure, the 𝑺(𝑡1) and 𝑔𝛼(𝑡1) variables, as well as, parameters as-

sociated with the texture evolution - 𝒎𝑡1
𝛼  and 𝒏𝑡1

𝛼  are calculated (Eq. 35-38). 

𝑺(𝑡1) = 𝑭
𝑒(𝑡1){[𝑑𝑒𝑡𝑭

𝑒(𝑡1)]
−𝟏𝑺∗(𝑡1)}𝑭

𝑒𝑇(𝑡1)                                   (35) 

𝑔𝛼(𝑡1) = 𝑔
𝛼(𝑡) + ∑ ℎ𝛼𝛽∆𝛾𝛽𝑁

𝛽=1 ,   𝛼 = 1,… ,𝑁                                (36) 

𝒎𝑡1
𝛼 = 𝑭𝑒(𝑡1)𝒎0

𝛼                                  (37) 

𝒏𝑡1
𝛼 = 𝑭𝑒(𝑡1)𝒏0

𝛼                                  (38) 

The integration procedure presented above has been implemented by authors in the form of the user 

material subroutine in ABAQUS program. The same approach is also used in PRISMS open software, 

which can be applied in solving benchmark tests treated as reference solutions. It is worth noting that 

static procedure requires the Jacobian matrix for the Newton-type iterative method in order to calculate 

the equilibrium configuration at the end of the time step (Deng, 2014). Contrary to this, the dynamic 

analysis does not require the determination of the Jacobian matrix.  

4. Elastic-plastic numerical simulations using the CP theory 

The CPFEM simulations presented in this paper were carried out using the following open-source 

programs: NEPER as pre- and post- processor, and FEPX as the solver. The geometry of models is 

prepared in NEPER as a polycrystalline structure using the 3D Voronoi tessellation. The finite element 

mesh is generated in the same program.  The numerical calculations are executed in FEPX program 

assuming proper boundary conditions. The stages of the CP analysis are shown in Fig. 3.  

Simulations were done for cube and paddy-shape samples. Different number of grains and different 

meshes were tested. The generic copper alloy with a FCC crystalline structure with 12 slip systems was 

included here for which elastic and plastic parameters (FEPX, 2008) are contained in Table 1. 
 

 

Fig. 3. Stages of CP analyses in NEPER and FEPX software 

 

Table 1. Elastic parameters and other data associated with the strain hardening used in analyses 

Parameter Unit Value 

Elastic parameters 

Elastic constant 𝐶11 MPa 245∙103 

Elastic constant 𝐶12 MPa 155∙103 

Elastic constant 𝐶44 MPa 62.5∙103 

Plastic parameters 

material constant 𝑚 - 0.05 

reference shear strain rate 𝛾̇0 s-1 1 

fixed-state hardening rate scaling coefficient ℎ0 MPa 200 

initial slip system strength 𝑔0 MPa 210 

initial slip system saturation strength 𝑔𝑠0 MPa 330 

rate sensitivity coefficient 𝑘 [-] - 1 
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Although, the microstructural analyses of elastic-plastic problems using the CP theory give the 

better description of phenomena occurring in materials than the macroscopic ones, the computational 

cost of such calculations is very high.  

In the further part of the research, the simple tension test of a plate with two holes is considered. 

The calculations are done in ABAQUS software using the user material procedure for the static analysis. 

The selected data applied in calculations are included in Table 2. On the basis of  

a macroscopic FEM analysis with the use of a UMAT, the information about stress and strain states, as 

well as, the deformation and velocity gradient tensors might be obtained. They can be then used in 

calculation based on the CP theory. So far, the UMAT material subroutine has been written for small 

strains only.  

Table 2. Selected parameters used in the elastic-plastic analysis in ABAQUS 

Parameter Unit Value 

Young modulus 𝐸 MPa 0.2∙105 

Poisson’s ratio 𝜈 - 0.33 

Yield stress 𝜎𝑝 MPa 200 

5. Results 

The CP analyses are usually done for a representative volume element (RVE) of a polycrystalline 

material in a cubic shape. Each grain in the RVE is considered as independent of other grains. The grain 

microstructure of the RVE might be represented by voxels with stair-stepped grain boundaries or using 

the smooth topology with a smooth flat grain boundaries (Fig. 4).  

a) 

 

b) 

 

Fig. 4. The microstructure using a) the voxels and b) grains with a smooth topology  

 

Some benchmark tests were conducted with NEPER and FEPX programs using the CP theory. In 

order to estimate the computation time, the non-isotropic polycrystalline sample of rectangular shape of 

dimensions 1 x 1 x 5 mm is subject to the tension with the strain rate 𝜀̇ = 0.02 [
1

𝑠
]. The material is 

modelled as an aggregate of 200 single crystals with crystals random orientations defined by the Euler 

angles (Fig. 5). The grain size was in the range of 50-200 μm. Each grain is discretized by several 

tetrahedral elements (Fig. 6). All elements in the single grain have the same crystal orientations.  
 

 
Fig. 5. The microstructure of a rectangular sample with 200 randomly orientated grains 
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Fig. 6. FEM mesh for a rectangular sample with 200 grains 

The 𝜎𝑧𝑧 stress distribution acting on the loading direction is shown in Fig. 7. Heterogeneous distri-

bution of stress inside the sample is noted, which is the result of grains anisotropy. The higher stress 

values in the range of 350-400 MPa are observed on the left and right faces. The heterogeneous stress 

distribution in the range of 50-200 MPa in the middle of a sample is also noted. 

 

Fig. 7. Distribution of longitudinal 𝜎𝑧𝑧 stress for a rectangular 200 grains sample 

The distribution of strain in longitudinal direction 𝜀𝑧𝑧 is presented in Fig. 8. The strain is mostly up 

to 0.006 and its distribution is heterogeneous. Some of grains show higher strains than others, which is 

associated with the anisotropy of the material. 

 

Fig. 8. Distribution of longitudinal strain 𝜀𝑧𝑧 for a rectangular 200 grains sample 

The microscopic analysis presented here allows predicting the macroscopic response of material. 

The macroscopic stress-stain curve for the tension test of rectangular sample with 200 grains was com-

puted using the homogenization procedure (Fig. 9). The homogenized stress is computed as the total 

tensile force related to the actual cross-section (calculated with the assumption of the volume conserva-

tion). 

In the second test a paddy shape sample with overall dimensions of 1.0 x 0.2 x 4.0 mm was subject 

to the tension load. The sample consists of 400 or 800 grains with random crystal orientations generated 

in the tessellation process (Fig. 10). The global coordinate system, material data, as well as, the boundary 

conditions are the same as in the previous test.  
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Fig. 9. Macroscopic stress-strain curve obtained with the use of the homogenization process 

a) 

 

b) 

 
 

Fig. 10. The microstructure of a paddy-like shape; a) 400 and b) 800 grains 

The effective stress and equivalent plastic strain distributions for the sample with 800 grains are 

presented in Fig. 11 and 12. The localization of strain near to the notch is noted. For both samples with 

different number of grains, shearing bands can be noted (contours sloped at 45˚ angle). The pole figures 

before and after the tensile load are presented in Fig. 13. 

 

Fig. 11. The HMH (von Mises) stress distribution 

 

Fig. 12. The equivalent plastic strain (PEEQ) distribution 
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a) 

 
b) 

 

Fig. 13. Pole figures showing the microstructure of a copper alloy; a) before and b) after a tensile loading test 

In the last test a flat plate with two holes fixed at one end is considered. The prescribed displacement 

is placed to the second end of this plate. The FE mesh consists of 1700 hexahedral elements (Fig. 14). 

The calculations are done as a static analysis for an isotropic material – all crystals have the same ori-

entation. Using UMAT user material procedure developed for small displacements analysis, one can get 

stress and strain states, as well as, the velocity and deformation gradients, rotation tensors, etc. 
 

 

 Fig. 14. The FEM mesh for plate with two holes example 

The selected macroscopic results – the distribution of effective stress and the equivalent plastic 

strain are shown in Fig. 15. Because of the isotropic response of polycrystalline structure resulting from 

uniform crystal orientation, macroscopic stress and strain are coincident with the solution obtained 

within classical plasticity. 
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a) 

 
b) 

 

Fig. 15. The distribution of a) HMH (von Misses) stress and b) equivalent plastic strain in a plate with two holes 

6. Discussion 

Numerical tests presented in this paper show the potential of using crystal plasticity approach in 

solving elastic-plastic engineering problems. In this two-scale approach the macroscopic stress and 

strain are computed considering the dislocation slip as the source of the plastic deformation (Fig. 16).  

 

 

Fig. 16. The idea of the combined micro- and macromechanical analysis 

The numerical CPFEM analysis is a complex and time-consuming. The following initial data are 

necessary for the microscopic analysis using the CPFEM model: 

1) The elastic moduli of a material  𝐶𝑖𝑗. 

2) Number of potentially activated slip systems. 

3) Initial crystallographic orientation in the sample coordinate system. 

4) Shear strain rate which depends on the resolved shear stress. 

5) Modulus of hardening. 

6) Parameters for the iteration method. 
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The following steps of a combined micro- and macromechanical approach are used here: 

1) Firstly, the orientation and slip systems are defined. 

2) At the starting time of the increment, the information about stress, strain, rotation, time increment 

and solution dependent variable are necessary. 

3) On the basis of the input parameters, the active slip systems and spin tensor are calculated. 

4) After that, the slip normal and directions are determined. 

5) The Jacobian matrix and other state variables are computed. 

6) All the state variables and stress are updated at the end of the load increment. 

The data obtained in numerical analyses using the CP theory shows anisotropic response of material 

under loading. Due to various orientation of crystals in polycrystalline materials the heterogeneous dis-

tribution of stress and strain is noted. 

It is worth highlighting, that the user material subroutine UMAT used here should consider the 

rotation of the coordinate system. For this reason, the constitutive equations are written in the corota-

tional frame. As a result of this objective stress rates should be used, namely Jaumann (𝝈∇𝐽) and Green-

Naghdi (𝝈∇𝐺) stress (Eq. 39-40) (Okereke & Keates, 2018; Perez, 2017). 

𝝈∇𝐽 = 𝝈̇ + 𝝈𝑾−𝑾𝝈                                  (39) 

𝝈∇𝐺 = 𝝈̇ + 𝝈𝜴 − 𝜴𝝈                                  (40) 

where: 𝝈̇ is stress rate tensor in a corotational frame, 𝝈 is Cauchy stress tensor, 𝑾 is spin tensor 

which comprises both the deformation and the rotation and 𝛀 is the angular velocity tensor resulting 

from a rigid body rotation. The parts 𝝈𝑾 and 𝑾𝝈 are associated with the rigid body rotation and the 

𝝈̇ term is associated with the material deformation (Wójcik & Skrzat, 2022c). 

In ABAQUS program, the Jaumann stress rate is used for materials commercially implemented and 

for a user material subroutine. However, application of the Green-Naghdi stress rate can change the 

material response, especially for large shearing associated with the large rotations. It is possible to en-

force using Green-Naghdi objective stress rate by adding two terms shown in Eq. 41. 

𝝈∇𝐺 = 𝝈∇𝐽 − 𝝈(𝑾−𝜴) + (𝑾−𝜴)𝝈                                  (41) 

The rate-independent crystal plasticity approach based on dislocation slip as the only plastic re-

sponse was used so far. In the further research the other models, e.g. viscoplastic ones will be considered 

and implemented in user material procedures. Further works will also focus on developing the VUMAT 

user material procedure for dynamic analyses. Other mechanisms of plastic deformations, e.g. the twin-

ning phenomena will be also considered. 

7. Summary and conclusions 

The possibility of the use of a crystal plasticity (CP) theory to solve elastic-plastic problems is 

presented in this paper. The numerical calculations using the CP approach based on the Anand and 

Kothari model was done. The selected macro- and micro- scales software were applied here. The stress 

and plastic strain distributions within grains in the polycrystalline material were analyzed here. On the 

basis of results obtained, the main conclusions are as follows: 

1) The CP theory gives the better interpretations of phenomena occurring in materials which are de-

formed plastically, especially in materials forming processes, e.g. SPD processes.  

2) The numerical calculations on the microscale level are associated with the writing of a user material 

procedure which is a very time-consuming and difficult task. 

3) The heterogeneous distribution of stress and strain in the polycrystalline material was noted which 

is a result of different orientation of crystals within grains. Some grains have higher stress and strain 

values than others, therefore. 

4) In order to verify the correctness of the user material procedure written and results obtained, addi-

tional tests are necessary, e.g. shearing tests, equal channel angular processing (ECAP), extrusion 

test, etc. 
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Sprężysto-plastyczne Analizy Numeryczne Niezależne od Prędkości Odkształcenia 

dla Materiałów Polikrystalicznych z Zastosowaniem Teorii Plastyczności Kryształów  

Streszczenie 

Analizy makroskopowe procesów przeróbki plastycznej prezentują jedynie ogólny zarys rozważanego pro-

blemu, bez uwzględnienia mechanizmów odkształcenia plastycznego oraz ewolucji mikrostruktury.  

W celu rozważania procesów przeróbki plastycznej stosowane są symulacje numeryczne w ramach teorii pla-

styczności kryształów uwzgledniające zmianę tekstury, anizotropię oraz umocnienie odkształceniowe.  

W artykule zaprezentowano zastosowanie modelu Ananda i Kothari w ramach teorii plastyczności kryształów 

niezależnej od prędkości odkształcenia do rozwiązywania analiz numerycznych dla materiałów polikrystalicz-

nych. W badaniach uwzględniono poślizg dyslokacyjny jako główny mechanizm odkształcenia plastycznego. 

Zaprezentowano wybrane rezultaty dla problemów sprężysto-plastycznych uzyskane zarówno w skali makro, 

jak i mikro- dla całkowania typu explicit i implicit. Uzyskano niejednorodny rozkład naprężenia i odkształcenia 

w poszczególnych ziarnach, związany z różną orientacją kryształów. Modelowanie numeryczne z zastosowa-

niem teorii plastyczności kryształów dla materiałów poddanych plastycznemu odkształceniu dostarcza nie 

tylko informacje o zmianie kształtu materiału w skali makro, ale także opisuje zjawiska zachodzące w materiale 

w skali mikro-. 

Słowa kluczowe: plastyczność kryształów, materiał polikrystaliczny, odkształcenie plastyczne, CPFEM, po-

ślizg dyslokacyjny 
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