Abstract
With the widespread use of numerically controlled machine tools, single-point incremental forming (SPIF) process has enjoyed growing interest in the industry. This article presents the results of research on the influence of forming process parameters (step size, tool rotational speed, feed rate and forming strategy) on the roughness of the outer surface of conical drawpieces with a slope angle of 45° from commercially pure titanium sheets. The following variable process parameters were used: tool rotational speed varied from –600 to 600 rpm, feed rate varied from 500 to 2000 mm/min and step size varied from 0.1 to 0.5 mm. The SAE 75W85 synthetic gear oil was used as lubricant. Two basic roughness parameters were analyzed: the mean roughness Sa and the maximum height Sz. The influence of SPIF parameters on surface roughness was analysed using multi-layer artificial neural networks. It was found that reducing the feed rate with the climb strategy causes a decrease in the average roughness Sa. The opposite relationship was observed when forming according to the conventional strategy. At low tool feed rate (500 mm/min), reducing the step size caused an increase in the Sz parameter. At high tool feed rate (2000 mm/min), the effect of the step size is negligible.
References
American Society for Testing and Materials. (2019). Standard specification for titanium and titanium alloy bars and billets (ASTM Standard No. B348-13). https://www.astm.org/standards/b348
Blaga, A., Bologa, O., Oleksik, V., & Pirvu, B. (2012). Experimental researches regarding the influence of geometric parameters on the principal strains and thickness reduction in single point incremental forming. UPB Scientific Bulletin, Series D: Mechanical Engineering, 74(2), 111-120.
Choudhary, S., Chounchary, N., Kumari, S., Kumari, A., & Mulay, A. (2025). Application of artificial neural network in predicting the performance of SPIF for aerospace grade AA7075-T6. Journal of Alloys and Compounds, 1010, Article 177146. https://doi.org/10.1016/j.jallcom.2024.177146
Cotigă, C., Bologa, O., Racz, S. G., & Breaz, R. E. (2014). Researches regarding the usage of titanium alloys in cranial implants. Applied Mechanics and Materials, 657, 173–177. https://doi.org/10.4028/www.scientific.net/AMM.657.173
Fang, Y., Lu, B., Chen, J., Xu, D. K., & Ou, H. (2014). Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. Journal of Materials Processing Technology, 214(8), 1503–1515. https://doi.org/10.1016/j.jmatprotec.2014.02.019
Garret, J. H., Gunarathan, D. J, & Ivezic, N. (1997). Introduction. In N. Kartam, I. Flood, J. H. Garrett (Eds.), Artificial neural networks for civil engineers: Fundamentals and applications (pp. 1-18). American Society of Civil Engineers.
Hagan, E., & Jeswiet, J. (2004). Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(10), 1307-1312. https://doi.org/10.1243/0954405042323559
Hamilton, K., & Jeswiet, J. (2010). Single point incremental forming at high feed rates and rotational speeds: Surface and structural consequences. CIRP Annals, 59(1), 311–314. https://doi.org/10.1016/j.cirp.2010.03.016
Hosford, W., & Caddell, R. (1983). Metal forming. Prentice Hall.
International Organization for Standardization. (2019). Geometrical product specifications (GPS) — Surface texture: Areal (ISO Standard No. ISO 25178-600:2019). https://www.iso.org/standard/67651.html
Krasowski, B. (2021). Analiza procesu kształtowania przyrostowego usztywnień w cienkościennych konstrukcjach nośnych wykonanych ze stopów aluminium EN AW-2024-T3 oraz EN AW-7075-T6 [Doctoral dissertation, Rzeszów University of Technology].
Kurra, S., Rahman, N. H., Regalla, S. P., & Gupta, A. K. (2015). Modeling and optimization of surface roughness in single point incremental forming process. Journal of Materials Research and Technology, 4(3), 304–313. https://doi.org/10.1016/j.jmrt.2015.01.003
Liao, J., Liu, J., Zhang, L., & Xue, X. (2020). Influence of heating mode on orange peel patterns in warm incremental forming of magnesium alloy. Procedia Manufacturing, 50, 5-10. https://doi.org/10.1016/j.promfg.2020.08.002
Milutinović, M., Lendjel, R., Baloš, S., Zlatanović, D. L., Sevšek, L, Pepelnjak, T. (2021). Characterisation of geometrical and physical properties of a stainless steel denture framework manufactured by single-point incremental forming. Journal of Materials Research and Technology, 10, 605-623. https://doi.org/10.1016/j.jmrt.2020.12.014
Nagargoje, A., Kankar, P. K., Jain, P. K., & Tandon, P. (2023). Application of artificial intelligence techniques in incremental forming: A state-of-the-art review. Journal of Intelligent Manufacturing, 34, 985–1002. https://doi.org/10.1007/s10845-021-01868-y
Najm, S. M., & Paniti, I. (2020). Study on effecting parameters of flat and hemispherical end tools in SPIF of aluminium foils. Technical Gazette, 27(6), 1844-1849. https://doi.org/10.17559/TV-20190513181910
Najm, S. M., & Paniti, I. (2021a). Predict the effects of forming tool characteristics on surface roughness of aluminum foil components formed by SPIF using ANN and SVR. International Journal of Precision Engineering and Manufacturing, 22(1), 13-26. https://doi.org/10.1007/s12541-020-00434-5
Najm, S. M., & Paniti, I. (2021b). Artificial neural network for modeling and investigating the effects of forming tool characteristics on the accuracy and formability of thin aluminum alloy blanks when using SPIF. International Journal of Advanced Manufacturing Technology, 114, 2591–2615. https://doi.org/10.1007/s00170-021-06712-4
Najm, S. M., & Paniti, I . (2023). Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets. Journal of Intelligent Manufacturing, 34(1), 331-367. https://doi.org/10.1007/s10845-022-02026-8
Oleksik, V., Bologa O., Breaz, R., & Racz, G. (2008). Comparison between the numerical simulations of incremental sheet forming and conventional stretch forming process. International Journal of Material Forming, 1, 1187-1190. https://doi.org/10.1007/s12289-008-0153-6
Oleksik, V., Pascu, A., Deac, C., Fleacă, R., Bologa, O., & Racz, G. (2010). Experimental study on the surface quality of the medical implants obtained by single point incremental forming. International Journal of Material Forming, 3, 935-938. https://doi.org/10.1007/s12289-010-0922-x
Oraon, M., & Sharma, V. (2021) Application of artificial neural network: A case of single point incremental forming (SPIF) of Cu67Zn33 alloy. Management and Production Engineering Review, 12(1), 17-23. https://doi.org/10.24425/mper.2021.136868
Paniti, I., Viharos, Z. J., Harangozó, D., & Najm, S. M. (2020). Experimental and numerical investigation of single point incremental forming of aluminium alloy foils. Acta Imeko, 9(1), 25-31. https://doi.org/10.21014/acta_imeko.v9i1.750
Pepelnjak, T., Sevšek, L., Lužanin, O., & Milutinović M. (2022). Finite element simplifications and simulation reliability in single point incremental forming. Materials, 15(10), Article 3707. https://doi.org/10.3390/ma15103707
Petek, A., Gantar, G.; Pepelnjak, T., & Kuzman K. (2007). Economical and ecological aspects of single point incremental forming versus deep drawing technology. Key Engineering Materials, 344, 931-938. https://doi.org/10.4028/www.scientific.net/KEM.344.931
Popp, G. P., Racz, S. G., Breaz, R. E., Oleksik, V. Ș., Popp, M. O., Morar, D. E., Chicea, A. L., Popp, I. O. (2024). State of the art in incremental forming: process variants, tooling, industrial applications for complex part manufacturing and sustainability of the process. Materials, 17(23), Article 5811. https://doi.org/10.3390/ma17235811
Racz, S. G., Breaz, R. E., Bologa, O., Tera, M., & Oleksik V. S. (2019). Using an adaptive network-based fuzzy inference system to estimate the vertical force in single point incremental forming. International Journal of Computers Communications & Control, 14(1), 63-77.
Rosca, N., Oleksik, V., Pascu, A., Oleksik, M., & Avrigean E. (2019). Optical study for springback prediction, thickness reduction and forces variations on single point incremental forming. Materials Today: Proceedings, 12, 213-218. https://doi.org/10.1016/j.matpr.2019.03.116
Şen, N., Şirin, Ş., Kıvak, T., Civek, T., & Seçgin, Ö. (2022). A new lubrication approach in the SPIF process: Evaluation of the applicability and tribological performance of MQL. Tribology International, 171, Article 107546. https://doi.org/10.1016/j.triboint.2022.107546
Sbayti, M., Bahloul, R., & Belhadjsalah, H. (2018). Numerical modeling of hot incremental forming process for biomedical application. In M. Haddar, F. Chaari, A. Benamara, M. Chouchane, C. Karra, N. Aifaoui (Eds.), Design and modeling of mechanical systems—III (pp. 881-891). Springer International Publishing. https://doi.org/10.1007/978-3-319-66697-6_86
Sbayti, M., Ghiotti, A., Bahloul, R., Belhadjsalah, H., & Bruschi, S. (2016). Finite element analysis of hot single point incremental forming of hip prostheses. MATEC Web of Conferences, 80, Article 14006. https://doi.org/10.1051/matecconf/20168014006
Sbayti, M., Ghiotti, A., Bahloul, R., BelhadjSalah, H., & Bruschi, S. (2022). effective strategies of metamodeling and optimization of hot incremental sheet forming process of Ti6Al4 vartificial hip joint component. Journal of Computational Science, 60, Article 101595. https://doi.org/10.1016/j.jocs.2022.101595
Szpunar, M., Ostrowski, R., Trzepieciński, T., & Kaščák, Ľ. (2021). Central composite design optimisation in single point incremental forming of truncated cones from commercially pure titanium Grade 2 sheet metals. Materials, 14(13), Article 3634. https://doi.org/10.3390/ma14133634