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Abstract: Operational methods are used to accomplish the solution
of certain problems with less effort and in a simple routine way. Laplace
transforms can be used to solve certain types of fractional singular inte-
gral equation not considered in the literature. In this study, the author
implemented an analytical technique the joint Laplace-Hankel transforms
to provide the exact solution for a time fractional non-homogeneous dif-
fusion equation with non-constant coefficients in cylindrical coordinates.
The obtained results reveal that the joint transform method is very con-
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1. Introduction and Preliminaries

In recent years, a growing number of research works done by many researchers from
various fields of engineering and science deal with dynamical systems described by
equations of fractional order which means equations involving derivatives and inte-
grals of fractional order.
In this work, the author studied analytically distribution functions during ion cy-
clotron resonance heating (ICRH) by using the one-dimensional Fokker-Planck equa-
tion incorporating ion-electron and ion-ion collisions and quasi-linear diffusion. In the
equation, we include source and loss terms and we find the steady-state and time-
dependent solutions which are regular in the origin and vanish at high energies. The
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main purpose of the current study is to develop a method for evaluation of certain
integrals and finding analytic solutions of fractional PDEs. An analytical technique
approaches, the joint Laplace-Hankel transforms to provide the exact solution for a
time fractional non-homogeneous diffusion equation with non-constant coefficients in
cylindrical coordinates.

1.1. Definitions and Notations

Definition 1.1. With Dc,α
t we denote the time fractional derivative of order α

(0 < α < 1) regularized in the Dzhrbashyan-Caputo sense defined for a sufficiently
regular function ϕ(t), as

Dc,α
t ϕ(t) =

1

Γ(1− α)

∫ t

a

1

(t− ξ)α
ϕ′(ξ)dξ. (1.1)

Remark. In this work, we prefer Caputo fractional derivative to Riemann-Liouville
one since the former is more popular in real applications. When we adopt the Ca-
puto fractional derivative of order-α, the initial values of y(0), y′(0), ..., ym(0), where
m = [α], are enough. Obviously, these initial values are prone to measure since they
have all physical meaning. On the other hand, we choose Caputo fractional derivative
due to another fact that the non-homogeneous initial conditions are permitted if such
conditions are necessary.

Definition 1.2. The Laplace transform of the function f(t) is given by[1-3]

L{f(t)} =

∫ ∞

0

e−stf(t)dt := F (s). (1.2)

If L{f(t)} = F (s), then L−1{F (s)} is as follows

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds, (1.3)

where F (s) is analytic in the region Re(s) > c.
The expression in equation (1.3) is the inverse Laplace transform for the function
F (s), and is often called the Bromwich integral.

Lemma 1.1. Let L{f(t)} = F (s) then, the following identities hold

1. L−1( 1√
s(
√
s+λ)

) = eλ
2tErfc(λ

√
t),

2. e−ωsβ = 1
π

∫∞
0
e−rβ(ω cos βπ) sin(ωrβ sin βπ)

s+r dr,

3. L−1(F (sα)) = 1
π

∫∞
0
f(u)

∫∞
0
e−tr−urα cosαπ sin(urα sinαπ)drdu,

4. L−1(F ( 3
√
s)) = 1

3π

∫∞
0

(ut )
3
2K 1

3
( 2u

√
u

3
√
3t
)f(u)du.

Proof. See [1].
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Example 1.1. The fractional integral of order α of the function ϕ(t), with 0 < α < 1
is defined as follows

J αϕ(t) =
1

Γ(α)

∫ t

0

(t− ξ)α−1ϕ(ξ)dξ,

then the Laplace transform of the fractional integral of order α is as below

L[J αϕ(t)] =

∫ +∞

0

e−st[
1

Γ(α)

∫ t

0

(t− ξ)α−1ϕ(ξ)dξ]dt =
Φ(s)

sα
.

Lemma 1.2. The following integral relation holds

L−1[
e−k

√
s

sν + λ
; s→ t] = f(t) =

1

π

∫ +∞

0

e−tξ[
ξν sin(πν − k

√
ξ)− λ sin(k

√
ξ)

ξ2ν + 2λξν cos(πν) + λ2
]dξ.

Proof. In view of the Titchmarch theorem or Gross-Levi lemma [3], we have the
following

f(t) =
1

π

∫ +∞

0

e−tξIm[
e−k

√
ξe−iπ

(ξe−iπ)ν + λ
]dξ,

or

f(t) =
1

π

∫ +∞

0

e−tξIm[
e−ik

√
ξ

ξν(cos(πν)− i sin(πν)) + λ
]dξ,

after simplifying we have

f(t) =
1

π

∫ +∞

0

e−tξIm
[cos(k

√
ξ)− i sin(k

√
ξ)][ξν cos(πν) + λ+ iξν sin(πν)]

ξ2ν + 2λξν cos(πν) + λ2
dξ,

or

f(t) =
1

π

∫ +∞

0

e−tξ[
ξν sin(πν − k

√
ξ)− λ sin(k

√
ξ)

ξ2ν + 2λξν cos(πν) + λ2
]dξ.

Let us consider the special cases
1. λ = k = 0, 0 < ν < 1 we have

L−1[
1

sν
; s→ t] = f(t) =

sin(πν)

π

∫ +∞

0

e−tξξ−νdξ =
tν−1

Γ(ν)
.

2. k = 0, we have

L−1[
1

sν + λ
; s→ t] = f(t) =

sin(πν)

π

∫ +∞

0

[
ξνe−tξ

ξ2ν + 2λξν cos(πν) + λ2
]dξ.
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Lemma 1.3. The following integral relation holds

L−1[
1

sβ(sν + λ)
; s→ t] =

∫ t

0

(t− η)β−1

Γ(β)

[
sin(πν)

π

∫ +∞

0

[
ξνe−ηr

ξ2ν + 2λrν cos(πν) + λ2
]dξ

]
dη.

Proof. Making use of the convolution theorem for the Laplace transform.
Corollary 1.1. Let us show that

L−1[
π√
3
e−3 3

√
s; s→ t] = t−

3
2K 1

3
(
2√
t
).

Note. In the above relation Kν(.) stands for the modified Bessel function of the
second kind of order ν.
Proof. Let us choose f(u) = δ(u−λ) then we have F (s) = e−λs, in view of part four
of the Lemma 1.1. we get

L−1[e−3 3
√
s; s→ t] =

1

3π

∫ ∞

0

(
u

t
)

3
2K 1

3
(
2u

√
u

3
√
3t

)δ(u− λ)du =
1

3π
(
λ

t
)

3
2K 1

3
(
2λ

√
λ

3
√
3t

).

If we choose λ = 3, after simplifying we arrive at

L−1[
π√
3
e−3 3

√
s; s→ t] = t−

3
2K 1

3

(
2√
t

)
.

In the above relation if we set s = 0 we have∫ +∞

0

t−
3
2K 1

3
(
2√
t
)dt =

∫ +∞

0

K 1
3
(ξ)dξ =

π√
3
.

Theorem 1.1. Let us consider fractional singular integro-differential equation

Dc,α
0,t ϕ(t) = f(t) + λ

∫ +∞

t

ϕ(ξ)dξ, 0 < t < +∞

ϕ(0) = u0,

∫ +∞

0

ϕ(ξ)dξ = k, 0 < α < 1,

then, the above fractional singular integro-differential equation has the following for-
mal solution

ϕ(t) = u0

+∞∑
n=0

(−λ)nt(α+1)n

Γ(1 + (α+ 1)n)
+

+∞∑
n=0

(−λ)n
∫ t

0

f(t− η)
η(α+1)n

Γ(1 + (α+ 1)n)
dη

− λk

+∞∑
n=0

(−λ)nt(α+1)(1+n)−1

Γ(1 + (α+ 1)n)
.



The Joint Laplace-Hankel Transforms for Fractional Diffusion Equation 9

Note. To the best of the author’s knowledge this kind of singular integral equation
is not considered in the literature.
Solution. Taking the Laplace transform of the above fractional singular integral
equation term wise, leads to

sαΦ(s)− sα−1u0 = F (s) + λ
Φ(s)− Φ(0)

s
= F (s) + λ

Φ(s)− k

s
.

After solving the above equation, we obtain

Φ(s) =
sF (s)

λ+ sα+1
+
u0s

α − λk

λ+ sα+1
,

or

Φ(s) =

+∞∑
n=0

(−λ)n
[

F (s)

sn(α+1)+α
+

u0
s(α+1)n+1

− λk

s(α+1)(n+1)

]
.

At this point, taking the inverse Laplace transform term-wise, we arrive at

ϕ(t) =

+∞∑
n=0

(−λ)n[
∫ t

0

f(t− ξ)
ξn(α+1)+α−1

Γ(n(α+ 1) + α)
dξ

+
u0t

(α+1)n

Γ(n(α+ 1) + 1)
− λkt(α+1)(n+1)−1

Γ((α+ 1)(n+ 1))
], 0 < t < +∞.

It is easy to verify that ϕ(0) = u0.
Let us consider the special case α = 0.5, we have

ϕ(t) =

+∞∑
n=0

(−λ)n[
∫ t

0

f(t− ξ)
ξ

3n−1
2

Γ( 3n+1
2 )

dξ

+
u0t

3n
2

Γ( 3n2 + 1)
− λkt

3n+1
2

Γ(( 32 (n+ 1))
], 0 < t < +∞.

Example 1.2. Let us assume that

Ψn(s) =

∫ +∞

0

(ξ2 + 1)
n−1
2 e−s

√
ξ2+1dξ

then we have

L−1[Ψn(s); s→ t] =
t
n+1
2

√
t2 − 1

.
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Proof. Let us start with the integral representation of Ψ1(s), Ψ1(s)=
∫ +∞
0

e−s
√

ξ2+1dξ,
then taking n-times derivative with respect to parameter s leads to

Ψn(s) =

∫ +∞

0

(ξ2 + 1)
n−1
2 e−s

√
ξ2+1dξ.

By taking inverse Laplace transform followed by the complex inversion formula, we
have

ψn(t) = L−1[Ψn(s); s→ t] =
1

2πi

∫ c+i∞

c−i∞
est[

∫ +∞

0

(ξ2 + 1)
n−1
2 e−s

√
ξ2+1dξ]ds.

At this stage changing the order of integration leads to

ϕn(t) = L−1[Ψn(s); s→ t] =

∫ +∞

0

(ξ2 + 1)
n−1
2 [

1

2πi

∫ c+i∞

c−i∞
e(t−

√
ξ2+1)sds]dξ.

The value of the inner integral is δ(t−
√
ξ2 + 1), we arrive at

ψn(t) = L−1[Ψn(s); s→ t] =

∫ +∞

0

(ξ2 + 1)
n−1
2 δ(t−

√
ξ2 + 1)dξ.

In order to evaluate the above integral, we make a change of variable

t−
√
ξ2 + 1 = η

ψn(t) = L−1[Ψn(s); s→ t] =

∫ t−1

−∞
(t− η)

n−1
2 .

t− η√
(t− η)2 − 1

δ(η)dη =
t
n+1
2

√
t2 − 1

.

Finally using convolution theorem for the Laplace transform, we have the following
relation

ψ(t) = L−1[Ψn(s)Ψm(s); s→ t] =

∫ t

0

(t− ξ)
m+1

2√
(t− ξ)2 − 1

ξ
n+1
2√

ξ2 − 1
dξ.

2. Generalized Bessel’s Equation, Bessel Functions,
Hankel Transform

Let us consider the following second order differential equation with non-constant
coefficients

x2y′′ + (1− 2α)xy′ + [(kcxc)2 + α2 − ν2c2]y = 0, (2.1)
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the above equation has the following solution

y(x) = xα[C1Jν(kx
c) + C2Yν(kx

c)]. (2.2)

We note that if α = 0, c = 1 we obtain the Bessel equation

x2y′′ + xy′ + [(kx)2 − ν2c2]y = 0, (2.3)

with the solution as follows

y(x) = C1Jν(kx) + C2Yν(kx). (2.4)

In Eq.(2.1), if we set α = 0.5, c = 3
2 , ν = 1

3 , k = 2i
3 we get

x2y′′ + [(ix
3
2 )2 +

1

4
− 1

4
]y = 0, (2.5)

after simplifying we obtain

y′′ − xy = 0, (2.6)

the above equation is known as an Airy differential equation with the solution as
below

y(x) =
√
x[C1J 1

3
(
2i

3
x

3
2 ) + C2J− 1

3
(
2i

3
x

3
2 )]. (2.7)

At this stage using the fact that

Jν(ix) = e
−iπν

2 Iν(x), Kν(x) =
2

sin(πν)
[I−ν(x)− Iν(x)].

Where Iν(x), Kν(x) are the modifed Bessel functions of the first and second kind
respectively. Therefore, we get

y(x) =
√
x[C ′

1I 1
3
(
2

3
x

3
2 ) + C ′

2I− 1
3
(
2

3
x

3
2 )]. (2.8)

In the special case ν = 1
3 , we have the following relations [8,11]

Ai(x) =
1

π

√
x

3
K 1

3
(
2x

3
2

3
) =

√
x

3
[I− 1

3
(
2x

3
2

3
)− I 1

3
(
2x

3
2

3
)]

and

Bi(x) =

√
x

3
[I− 1

3
(
2x

3
2

3
) + I 1

3
(
2x

3
2

3
)].

Finally, equation (2.6) has the following solution in terms of the Airy functions
Ai(x), Bi(x)

y(x) = C ′′
1Ai(x) + C ′′

2Bi(x).

Remark. It is worth mentioning that the Airy function Ai(x) is used in physics to
model of the diffraction of light.
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Theorem 2.1. We have the following integral representation of the square of the
Airy function

Ai2(ϕ) =
1

π
√
3

∫ +∞

0

ηJ0(2ϕη +
2η3

3
)dη. (2.9)

Note. In the literature the integral representation of the square of the Airy function
is given [8,11].
Proof. Let us start with an integral representation of the product of the modified
Bessel functions of order ν as follows

Kν(x)Kν(y) =
π

2 sin(πν)

∫ +∞

ln( y
x )

J0(
√

2xy cosh ξ − (x2 + y2)) sinh(νξ)dξ,

by taking ν = 1
3 , x = y, we have the following relation [8]

K2
1
3
(x) =

π

2 sin(π3 )

∫ +∞

0

J0(x
√
2 cosh ξ − 2)) sinh(

ξ

3
)dξ.

At this stage using the well-known identity K 1
3
(x) = π

√
3√
ϕ
Ai(ϕ), where x = 2

3ϕ
3
2 ,

therefore, we have

[
π
√
3√
ϕ
Ai(ϕ)]2 =

π√
3

∫ +∞

0

J0(
2

3
ϕ

3
2

√
2 cosh ξ − 2))2 sinh(

ξ

6
) cosh(

ξ

6
)dξ,

after simplifying we obtain

Ai2(ϕ) =
ϕ

3π
√
3

∫ +∞

0

J0[
4ϕ

√
ϕ

3
(3 sinh(

ξ

6
) + 4 sinh3(

ξ

6
))]2 sinh(

ξ

6
) cosh(

ξ

6
)dξ.

Let us introduce a change of variable sinh( ξ6 ) =
η

2
√
ϕ
, then we have 1

6 cosh(
ξ
6 )dξ =

dη
2
√
ϕ
,

from which we deduce that

Ai2(ϕ) =
ϕ

3π
√
3

∫ +∞

0

J0[
4ϕ

√
ϕ

3
[(

3η

2
√
ϕ
) + 4(

η

2
√
ϕ
)3]]12

η

2
√
ϕ

dη

2
√
ϕ
.

Finally, we obtain

Ai2(ϕ) =
1

π
√
3

∫ +∞

0

ηJ0(2ϕη +
2η3

3
)dη. (2.10)

Let us consider the following special cases
1. ϕ = 0, we get

Ai2(0) =
1

3
4
3Γ2( 23 )

=
1

π
√
3

∫ +∞

0

ηJ0(
2η3

3
)dη.

2. In Eq.(2.10), taking derivitive with respect to ϕ and setting ϕ = 0, we have

2Ai(0)Ai′(0) =
−2

2π
√
3
=

−2

π
√
3

∫ +∞

0

η2J1(
2η3

3
)dη,
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or ∫ +∞

0

2η2J1(
2η3

3
)dη =

∫ +∞

0

J1(τ)dτ = 1.

Theorem 2.2. We have the following integral identity for the modified Bessel function
of the second kind or Macdonald function∫ +∞

0

Kν(λ
√
x2 + z2)

x2β+1

(x2 + z2)
ν
2
dx =

2βΓ(β + 1)

λβ+1zν−(β+1)
Kν−(β+1)(λz).

Proof. Let us start with the left hand side, by using an integral representation for
the modified Bessel function, we have∫ +∞

0

Kν(λ
√
x2 + z2)

x2β+1

(x2 + z2)
ν
2
dx =

=

∫ +∞

0

x2β+1

(x2 + z2)
ν
2
[(
λ(
√
x2 + z2)

2
)ν

∫ +∞

0

e−ξ−λ2(x2+z2)
4ξ

dξ

2ξν+1
]dx,

changing the order of integration in the double integral and after simplifying, we
obtain

L.H.S = (
λ

2
)ν

∫ +∞

0

e−ξ−λ2z2

4ξ [

∫ +∞

0

x2β+1e−
λ2x2

4ξ dx]
dξ

2ξν+1
.

At this point let us make a change of variable u = λ2x2

4ξ in the inner integral after
simplification we obtain

L.H.S =
1

2
(
λ

2
)νΓ(β + 1)(

2

λ
)2(β+1)

∫ +∞

0

e−ξ−λ2z2

4ξ
dξ

2ξν+1
.

Let us rewrite the above relation as follows

L.H.S =
1

2
(
λ

2
)νΓ(β + 1)(

2

λ
)2(β+1)(

λz

2
)−ν+(β+1))[(

λz

2
)ν−(β+1)(

∫ +∞

0

e−ξ−λ2z2

4ξ
dξ

2ξν+1
].

But the expression in the brackets is the integral representation for the modified
Bessel function Kν−(β+1)(λz), therefore we get

L.H.S =
2βΓ(β + 1)

zν−(β+1)λβ+1
Kν−(β+1)(λz).

Let us consider the special case ν = 0 then we get∫ +∞

0

K0(λ
√
x2+z2)x2β+1dx=

2βΓ(β+1)

λβ+1z−(β+1)
K−(β+1)(λz)=

2βz(β+1)Γ(β+1)

λβ+1
K(β+1)(λz).
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Also, considering the special case β = − 1
2 we obtain∫ +∞

0

K0(λ
√
x2 + z2)dx =

√
λz

2π
K 1

2
(λz).

In the above theorem, we used the fact that Kν(.) = K−ν(.) and the well-known

integral representation Kν(az) = (az2 )ν
∫ +∞
0

e−ξ− a2z2

4ξ dξ
2ξν+1 , [5,8].

Hankel Transforms

Hankel transforms arise naturally in solving boundary-value problems formulated in
cylindrical coordinates. They also occur in other applications such as determining
oscillations of the suspended heavy chain from one end.
We define the general Hankel transforms of order ν by

Hν [ϕ(r); ρ] =

∫ +∞

0

rJν(ρr)ϕ(r)dr = Φ(ρ). (2.11)

The corresponding inversion formula of which takes the form

H−1
ν [Φ(ρ); r] =

∫ +∞

0

ρJν(rρ)Φ(ρ)dρ = ϕ(r). (2.12)

The basic requirement for the existence of the Hankel transform is that the function√
rf(r) be absolutely integrable and piecewise continuous on the positive real line. In

this section we will determine the Hankel transform of certain functions and develop
some of the fundamental operational properties of the Hankel transform.

Lemma 2.1. Let us assume that Hν [ϕ(r); ρ] = Φ(ρ), then we have

1. Hν [
1

rν+1

d

dr
[r2ν+1 d

dr
(
1

rν
ϕ(r))]; ρ] = −ρ2Φ(ρ). (2.13)

2. H0[
1

r

d

dr
[r
d

dr
(ϕ(r))]; ρ] = −ρ2Φ(ρ). (2.14)

Proof. See [3,4,9].

Example 2.1. Show that

H0[
1√

r2 + a2
; ρ] =

1

ρ
e−aρ.

Proof. Let us start with the Laplace transform of the function J0(rρ), we have

L[J0(rρ); ρ→ a] =

∫ +∞

0

e−aρJ0(rρ)dρ =
1√

a2 + r2
.
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In terms of the Hankel transform of order zero we have

H0[
e−aρ

ρ
; ρ→ r] =

1√
r2 + a2

.

Inverting the above relation leads to

H−1
0 [

1√
r2 + a2

; r → ρ] =

∫ +∞

0

ρJ0(ρr)
1√

r2 + a2
dr =

e−aρ

ρ
.

Lemma 2.2. Parseval identity for the Hankel transform.
If Φ(ρ) and Ψ(ρ) are the Hankel transforms of the functions ϕ(r) and ψ(r), respec-
tively, then ∫ +∞

0

rϕ(r)ψ(r)dr =

∫ +∞

0

ρΦ(ρ)Ψ(ρ)dρ. (2.15)

Proof. The integral on the right side can be rewritten as follows∫ +∞

0

ρΦ(ρ)Ψ(ρ)dρ =

∫ +∞

0

ρΦ(rho)[

∫ +∞

0

rJν(ρr)ψ(r)dr]dρ.

Changing the order of integration, we get∫ +∞

0

ρΦ(ρ)Ψ(ρ)dρ =

∫ +∞

0

rψ(r)[

∫ +∞

0

ρJν(rρ)Φ(ρ)dρ]dr =

∫ +∞

0

rψ(r)ϕ(r)dr.

Lemma 2.3. The following integral identity holds

1

2
δ(
a2 − b2

4
) =

∫ +∞

0

ρJν(aρ)Jν(bρ)dρ. (2.16)

Proof. Let us take ϕ(r) = 1
2δ(

r2−a2

4 ) and ψ(r) = 1
2δ(

r2−b2

4 ). In view of the Parseval
identity and using Lemma 2.4. we have∫ +∞

0

1

2
δ(
r2 − a2

4
)
1

2
δ(
r2 − b2

4
)rdr =

1

2
δ(
a2 − b2

4
) =

∫ +∞

0

ρJν(aρ)Jν(bρ)dρ. (2.17)

Lemma 2.4. We have the following relations for the Hankel transform

Hν [
1

2
δ(
r2 − a2

4
); ρ] =

∫ +∞

0

rJν(ρr)δ(
r2 − a2

4
)dr = Jν(aρ). (2.18)
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Proof. Let us make a change of variable ξ = r2−a2

4 in the above integral, we get

Hν [
1

2
δ(
r2 − a2

4
); ρ] =

∫ +∞

− a2

4

√
4ξ + a2Jν(ρ

√
4ξ + a2)δ(ξ)

2dξ√
4ξ + a2

= Jν(aρ).

(2.19)

3. Solution for the Time Fractional Heat Equation
in Cylindrical Coordinates Via the Joint Laplace-
Hankel Transform

Fractional calculus deals with the fractional integrals and derivatives of arbitrary or-
der. It provides better models for systems having long range memory and non-local
effects and it has important applications in several fields of engineering and sciences.
Fractional differential equations are widely used for modeling anomalous diffusion
phenomena. In this section, the author implemented the joint Laplace-Hankel trans-
forms to construct the exact solution for the time fractional heat conduction equation.
In the past three decades, considerable research work has been invested in the study
of the anomalous diffusion using the time fractional equation.
Problem 3.1 Let us solve the following impulsive time fractional heat conduction
equation in cylindrical coordinates

Dc,α
t u =

a2

r

∂

∂r
(r
∂u

∂r
) + δ(t)δ(r − r0), α = 0.5, t > 0, 0 < r < +∞.

with the boundary conditions as follows

1. u(r, 0) = f(r), 2. lim
r→0

|u(r, t)| < +∞, 3. lim
r→+∞

u(r, t) = 0.

Solution. Let us define the joint Laplace-Hankel transform of order zero as follows

U(ρ, s) =

∫ +∞

0

rJ0(ρr)[

∫ +∞

0

e−stu(r, t)dt]dr. (3.1)

Application of the joint Laplace-Hankel transform the above equation leads to the
following transformed equation with the boundary conditions as follows

sαU(ρ, s) + a2ρ2U(ρ, s) = sα−1F (ρ) + r0J0(r0ρ), H0[f(r); ρ] = F (ρ). (3.2)

Solving the above equation (3.2) yields

U(ρ, s)=
sα−1F (ρ) + r0J0(r0ρ)

sα + a2ρ2
= F (ρ)[

1

s1−α(sα + a2ρ2)
]+J0(r0ρ)

r0
s1−α(sα + a2ρ2)

.

(3.3)
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At this point, taking the joint inverse Laplace-Hankel transform of order zero to obtain

u(r, t) =

∫ +∞

0

ρJ0(rρ)F (ρ)[L−1[
1

s1−α(sα + a2ρ2)
]dρ

+ r0

∫ +∞

0

ρJ0(r0ρ)J0(rρ)[L−1[
1

s1−α(sα + a2ρ2)
]dρ. (3.4)

At this stage let us take α = 0.5, then we have

L−1[
1

s1−α(sα + a2ρ2)
] = L−1[

1√
s(
√
s+ a2ρ2)

] = ea
4ρ4tErfc(a2ρ2

√
t). (3.5)

In relation (3.6), let us replace F (ρ) = H0[f(r); ρ], r0J0(r0ρ) = H0[δ(r − r0); ρ] by
the following integrals

F (ρ) =

∫ +∞

0

ξJ0(ρξ)f(ξ)dξ, r0J0(r0ρ) =

∫ +∞

0

τJ0(ρτ)δ(τ − r0)dτ (3.6)

we arrive at

u(r, t) =

∫ +∞

0

ρJ0(rρ)e
a4ρ4tErfc(a2ρ2

√
t)[

∫ +∞

0

ξJ0(ρξ)f(ξ)dξ]dρ+

+

∫ +∞

0

ρJ0(rρ)e
a4ρ4tErfc(a2ρ2

√
t)[

∫ +∞

0

τJ0(ρτ)δ(τ − r0)dτ ]dρ (3.7)

By changing the order of integration we obtain the formal solution to boundary-
value problem

u(r, t) =

∫ +∞

0

ξf(ξ)[

∫ +∞

0

ρJ0(rρ)e
a4ρ4tErfc(a2ρ2

√
t)J0(ξρ)dρ]dξ+

+

∫ +∞

0

τδ(τ − r0)[

∫ +∞

0

ρJ0(rρ)e
a4ρ4tErfc(a2ρ2

√
t)J0(τρ)dρ]dτ. (3.8)

Note. In the above relation Erfc(ξ) = 2√
π

∫ +∞
ξ

e−t2dt.

The last step is to evaluate u(r, 0) as below

u(r, 0)=

∫ +∞

0

ξf(ξ)[

∫ +∞

0

ρJ0(rρ)J0(ξρ)dρ]dξ +

∫ +∞

0

τδ(τ − r0)[

∫ +∞

0

ρJ0(rρ)J0(τρ)dρ]dτ.

(3.9)

In view of the Lemma 2.4. the value of the inner integrals are 1
2δ(

r2−ξ2

4 ) and 1
2δ(

r2−τ2

4 )
respectively, therefore

u(r, 0) =

∫ +∞

0

ξf(ξ)[
1

2
δ(
r2 − ξ2

4
)]dξ +

∫ +∞

0

τδ(τ − r0)[
1

2
δ(
r2 − τ2

4
)]dτ = f(r).

(3.10)

Note. In the last step we have made a change of variable r2−ξ2

4 = η in the above
integral.
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4. Main Result. Solution for The Time Fractional
Non-Homogeneous Heat Equation in Cylindrical
Coordinates via the Joint Laplace-Hankel Trans-
form

Let us consider the following time fractional heat conduction equation a fractional
generalization of the problem Ion distribution function during ion cyclotron resonance
heating at the fundamental frequency [6]

Dc,α
t u =

∂2u

∂r2
+

1

r

∂u

∂r
− λu+ ϕ(r) + J αh(t), 0 < α < 1, t > 0, 0 < r < +∞

with the boundary conditions as below

1. u(r, 0) = ψ(r), 2. lim
r→0

|u(r, t)| < +∞, 3. lim
r→+∞

u(r, t) = 0.

Note. Analytic solutions are more important than numerical solutions, because these
are valid in the whole domain of definition whereas the numerical solutions are only
valid at chosen points in the domain of definition.
Solution. Let us define the joint Laplace-Hankel transforms of order zero as follows

U(ρ, s) =

∫ +∞

0

rJ0(ρr)[

∫ +∞

0

e−stu(r, t)dt]dr. (4.1)

By applying the joint Laplace-Hankel transforms of order zero the above equation,
we arrive at the following transformed equation with the boundary conditions

(sα + ρ2 + λ)U(ρ, s) = sα−1Ψ(ρ) +
Φ(ρ)

s
+
H(s)

sα
. (4.2)

Solution of the above equation (4.2) leads to

U(ρ, s) =
Ψ(ρ)

s1−α(sα + ρ2 + λ)
+

Φ(ρ)

s(sα + ρ2 + λ)
+

H(s)

sα(sα + ρ2 + λ)
. (4.3)

By taking the inverse joint Laplace-Hankel transform of order zero, we have

u(r, t) =

∫ +∞

0

ρJ0(rρ)Ψ(ρ)[L−1[
1

s1−α(sα + ρ2 + λ)
]dρ+

+

∫ +∞

0

ρJ0(rρ)Φ(ρ)[L−1[
1

s(sα + ρ2 + λ)
]dρ+

∫ +∞

0

ρJ0(rρ)[L−1[
H(s)

sα(sα + ρ2 + λ)
]dρ.

(4.4)

In view of the Corollary 1.2. we have the following formal solution

u(r, t)=
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=
sin(πα)

πΓ(1−α)

∫ +∞

0

ρJ0(rρ)Ψ(ρ)[

∫ t

0

1

(t−η)α
[

∫ +∞

0

ξαe−ηξdξ

ξ2α+2(
√
ρ2+λ)ξα cos(πα)+λ+ρ2

]dη]dρ+

+
sin(πα)

π

∫ +∞

0

ρJ0(rρ)Φ(ρ)[

∫ t

0

[

∫ +∞

0

[
ξαe−ηξ

ξ2α + 2(
√
ρ2 + λ)ξα cos(πα)+λ+ρ2

]dξ]dη]dρ+

+
sin(πα)

π

∫ +∞

0

ρJ0(rρ)[

∫ t

0

J αh(t−η)[
∫ +∞

0

[
ξαe−ηξ

ξ2α+2(
√
ρ2+λ)ξα cos(πα)+λ+ρ2

]dξ]dη]dρ.

(4.5)

At this stage let us take α = 0.5, then we obtain the solution as follows

u(r, t) =
1

πΓ( 12 )

∫ +∞

0

ρJ0(rρ)Ψ(ρ)[

∫ t

0

1

(t− η)
1
2

[

∫ +∞

0

√
ξe−ηξdξ

ξ + λ+ ρ2
]dη]dρ+

+
1

π

∫ +∞

0

ρJ0(rρ)Φ(ρ)[

∫ t

0

[

∫ +∞

0

[

√
ξe−ηξ

ξ + λ+ ρ2
]dξ]dη]dρ

+
1

π

∫ +∞

0

ρJ0(rρ)[

∫ t

0

J αh(t− η)[

∫ +∞

0

[

√
ξe−ηξ

ξ + λ+ ρ2
]dξ]dη]dρ. (4.6)

At this point, we may use the following integral identity in order to evaluate the inner
most integral [5]∫ +∞

0

√
ξe−ηξ

ξ + (λ+ ρ2)
dξ =

√
λ+ ρ2eη(λ+ρ2)Γ(−1

2
, η(λ+ ρ2)),

therefore we get

u(r, t)=
1

πΓ( 12 )

∫ +∞

0

ρJ0(rρ)Ψ(ρ)[

∫ t

0

1

(t− η)
1
2

[
√
λ+ρ2eη(λ+ρ

2)Γ(−1

2
, η(λ+ ρ2))]dη]dρ+

+
1

π

∫ +∞

0

ρJ0(rρ)Φ(ρ)[

∫ t

0

[
√
λ+ ρ2eη(λ+ρ2)Γ(−1

2
, η(λ+ ρ2))]dη]dρ+

+
1

π

∫ +∞

0

ρJ0(rρ)[

∫ t

0

J αh(t− η)[
√
λ+ ρ2eη(λ+ρ2)Γ(−1

2
, η(λ+ ρ2))]dη]dρ. (4.7)

Note. In the above relation Γ(a, ξ) =
∫ +∞
ξ

ts−1e−tdt stands for the incomplete
gamma function.
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5. Conclusion

The paper is devoted to studying and application of the joint Laplace-Hankel trans-
form for solving time fractional heat equation in cylindrical coordinates. The main
purpose of this work is to develop a method for finding analytic solutions of fractional
PDEs, evaluation of certain integrals. These results should be applicable to obtaining
solutions of a wide class of problems in applied mathematics, engineering and math-
ematical physics. The methods and techniques discussed in this article can also be
applied to solve other types of the fractional partial differential equations.
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